STEINITZ CLASSES IN QUARTIC FIELDS

STEPHEN PIERCE

Abstract. Let K be normal quartic over the rationals. Let $l \equiv 3 \pmod{4}$ be an odd prime. If the class number of K is even, there is a normal extension L of degree l over K such that the relative discriminant is principal, but L has no relative integral base over K.

I. Introduction and results. Let K be an algebraic number field, and L a finite extension. The relative discriminant $D_{L/K}$ is an ideal of K. Let d be the discriminant of a K-base of L and (d) the principal ideal generated by d. Then $D_{L/K} = B^2(d)$ for some fractional ideal B of K. The ideal class to which B belongs is written $C(L/K)$ and is called the Steinitz class of L with respect to K.

Artin [1] showed that L has a relative integral base over K if and only if $C(L/K)$ is principal. Thus if the class number h_K is odd, L has a relative integral base if and only if $D_{L/K}$ is principal.

The story is different if h_K is even; $C(L/K)$ may be in a class of order 2, i.e., $D_{L/K}$ can be principal without L having an integral K-base.

Fröhlich [2] showed that every ideal class of K is a Steinitz class for some quadratic extension. For a fixed odd prime l, Long [5] found which classes of K can be Steinitz classes for some normal extension of degree l. We repeat his result. The classes are those of the form $C^{l-1/2}$, where C is a class containing a prime divisor of l or C contains a prime which splits fully upon adjunction of the lth roots of unity.

Let K be an algebraic number field, and let l be an odd prime. We say K has property (\ast) with respect to l if there is a normal extension L of degree l which has no relative integral base, but $D_{L/K}$ is principal.

No field K with odd class number can have (\ast) with respect to any prime; $D_{L/K}$ is principal if and only if L has a relative integral base. Thus, for the rest of the paper, we only deal with fields K for which h_K is even.

If $l \equiv 1 \pmod{4}$ and $h_K = 2$, it is clear that K does not have (\ast) with respect to l. For the case $l \equiv 3 \pmod{4}$ and h_K even, the problem seems harder. We do not know of any such fields which do not have property (\ast) with respect to l.

Received by the editors April 16, 1973.

Key words and phrases. Steinitz class, ideal class group.

1 This work was partly supported by National Research Council of Canada Grant A-7862.

© American Mathematical Society 1974

39
Theorem 1. Let K be quadratic over the rationals Q. Suppose h_K is even and $l \equiv 3 \pmod{4}$ is prime. Then K has (\ast) with respect to l.

Theorem 2. Let K be normal quartic over Q. Suppose h_K is even and $l \equiv 3 \pmod{4}$ is prime. Then K has (\ast) with respect to l.

II Proofs. First, some preliminary remarks. The ideal classes of K which are Steinitz classes for some normal extension of K of degree l form a group [5]. If K does not have (\ast) then all primes which split fully upon adjunction of an lth root of unity ζ are in classes of odd order. Thus the 2-part of the Hilbert class field of K lies in $K(\zeta)$ and hence $h_K \equiv 2 \pmod{4}$. Also $K((-l)^{1/2})$ is quadratic unramified over K and K is totally imaginary.

Theorem 1 is easy to complete. We have ζ imaginary and $l \mid D_{K/Q}$. Now $K \not= Q((-l)^{1/2})$, since $-l$ is not a square in K; thus l is the square of a prime ideal in a class of order 2.

We divide Theorem 2 into two cases. First assume K is cyclic over Q. Let k be the unique subfield; k is real. A prime fully ramified from Q to K is $\equiv 1 \pmod{4}$ or is 2. Any prime ramified in k is fully ramified in K. Thus l is ramified from k to K.

Let h_0 be the narrow class number of k. Let t be the number of primes (including infinite primes) ramifying from k to K. By a formula of Hasse [3, p. 99], the number h of ambiguous classes of K over k is

$$(1) \quad h = h_0 2^{t+q^*-3}$$

and the number h' of ambiguous classes of K containing ambiguous ideals is

$$(2) \quad h' = h_0 2^{t+q^*-3}$$

where q^*, q are given by

$$(3) \quad 2q^* = (E_k \cap N_{K/k}K^*:E_k^2),$$

$$ (4) \quad 2q = (E_k \cap N_{K/k}E_K:E_k^2).$$

In (3), (4), E_K, E_k are the unit groups.

The ambiguous classes of K are a group, and since $h_K \equiv 2 \pmod{4}$, we also have $h \equiv 2 \pmod{4}$. In the case of K cyclic over Q, we have $t \geq 4$ and hence h_0 is odd and $q^* = 0$. Thus $k = Q(p^{1/2})$ or $Q(2^{1/2})$ and $p \equiv 1 \pmod{4}$. Now l is inert in k; otherwise $t \geq 5$. Thus $D_{K/k} = (lp^{1/2})$. It follows that l is the square of a prime in the class of order 2 in K.

Next, let K have Galois group $C_2 \times C_2$. Let k be the real subfield. Suppose l ramifies from Q to k. Then $2 \mid h_0$ and the fundamental unit ϵ of k has norm 1. Hasse's formula yields $t = 3$, $q^* = 0$; $t = 2$, $q^* = 1$; or $t = 2$, $q^* = 2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
q* = 0. Since \(\varepsilon \) is totally positive, \(\varepsilon \) is a norm at all primes except possibly one; hence \(\varepsilon \) is a global norm and \(q^* \geq 1 \). Our only alternative is \(t = 2, q^* = 1, h_0 \equiv 2 \) (4). Then \(K \) must be \(k((-l)^{1/2}) \) which contradicts the fact that \(-l \) is not a square in \(K \).

Finally, suppose \(l \) does not ramify in \(k \). In (1), \(t \geq 3 \) and our alternatives are \(t = 3, q^* = 0; t = 3, q^* = 1; t = 4, q^* = 0 \). If \(q^* = 1, t = 3 \), then \(h_0 \) is odd and \(k = Q(p^{1/2}) \), \(p \equiv 1 \) (4) a prime or \(p = 2 \). In either case, \(\varepsilon \) is not totally positive, so \(q^* \neq 1 \).

In the other cases, \(q^* = 0, l \). If \(t = 3, l \) is the only finite prime ramifying, so \(l \) ramifies in the class of order 2. If \(t = 4, h_0 \) is odd and \(k = Q(p^{1/2}) \) or \(Q(2^{1/2}) \) as before. Then \(k' = Q((-l)^{1/2}) \) is a subfield of \(K \), where \(r \) is a prime different from \(p \). Thus \(l, r \) are inert in \(k \) and ramify from \(k \) to \(k' \). Hence the prime in \(K \) dividing \(l \) must lie in the class of order 2.

III. Additional remarks. It is clear that any normal extension \(K \) of \(Q \) with even class number must have property (*) with respect to any odd prime \(l \), simply because \(l \) cannot have even ramification index in \(K \).

If \(l \equiv 3 \) (4) and \(K \) is an abelian field with even class number and not having property (*), then the largest subfield of \(K \) which has degree a power of 2 also does not have (*).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO M5S 1A1, CANADA