Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Harmonic null sets and the Painlevé theorem

Author: J. L. Schiff
Journal: Proc. Amer. Math. Soc. 43 (1974), 171-172
MSC: Primary 30A50; Secondary 31A20
MathSciNet review: 0330447
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A less restrictive condition on an open Riemann surface than has been formerly known for a subset of the ideal boundary of a resolutive compactification to have harmonic measure zero is demonstrated. Then a generalized version of a classical theorem of Painlevé is established in this framework.

References [Enhancements On Off] (What's this?)

  • [1] M. Arsove, The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184-194. MR 36 #4009. MR 0220957 (36:4009)
  • [2] M. Arsove and H. Leutwiler, Painlevé's theorem and the Phragmén-Lindelöf maximum principle, Math. Z. 122 (1971), 227-236. MR 0308419 (46:7533)
  • [3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. und ihrer Grenzgebiete, Band 32, Springer-Verlag, Berlin, 1963, 244 pp. MR 28 #3151. MR 0159935 (28:3151)
  • [4] P. Painlevé, Sur les lignes singulières des fonctions analytiques, Ann. de Toulouse 2 (1888), 1-130. MR 1508069

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A50, 31A20

Retrieve articles in all journals with MSC: 30A50, 31A20

Additional Information

Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society