ON THE RANGE OF A HOMOMORPHISM OF A GROUP ALGEBRA INTO A MEASURE ALGEBRA

JYUNJI INOUE

Abstract. It is shown, that if G is a LCA group and if H is a nondiscrete LCA group then there exists a proper closed subalgebra of the measure algebra of H (independent of the choice of G) in which the range of every homomorphism of the group algebra of G into the measure algebra of H is contained.

Throughout this paper, G and H denote LCA groups and \hat{G} and \hat{H} denote their dual groups, respectively. $\mathcal{X}(H)$ is the set of all the locally compact group topologies of H which are at least as strong as the original one of H. For each $\tau \in \mathcal{X}(H)$, if we denote by $H^{'\tau}$ a LCA group with underlying group H and topology τ, the natural continuous isomorphism of $H^{'\tau}$ onto H, $x \in H^{'\tau} \mapsto x \in H$, induces a natural norm-preserving embedding of $L^1(H^{'\tau})$ into $M(H)$, which we also denote by $L^1(H^{'\tau})$. For the other notations and terminologies which we need in this paper, we follow [6].

The author would like to express his thanks to the referee. His kind advice enabled the author to make this paper more readable.

Theorem. If h is a homomorphism of $L^1(G)$ into $M(H)$, then there exist finitely many elements $\tau_1, \tau_2, \cdots, \tau_n \in \mathcal{X}(H)$ such that the range of h is contained in $\sum_{i=1}^n L^1(H^{'\tau_i})$.

For the proof of the theorem, we essentially use Cohen's results, which determine all the homomorphisms of $L^1(G)$ into $M(H)$ by the notion of the coset ring and piecewise affine maps (cf. [1], [2], [3] and [6, Chapters 3 and 4]).

If h is a homomorphism of $L^1(G)$ into $M(H)$, Cohen's theorem asserts that there exist Y, an element of the coset ring of \hat{H}, and a piecewise affine map α from Y into \hat{G} such that

$$h(f)^{(\alpha)}(r) = f(\alpha(r)), \quad r \in Y$$

$$= 0, \quad r \notin Y \quad (f \in L^1(G)),$$

Received by the editors August 2, 1971 and, in revised form, June 18, 1973.

Key words and phrases. Homomorphisms of group algebras, measure algebras, LCA groups, range of homomorphisms.

© American Mathematical Society 1974

94
and conversely, if Y is an element of the coset ring of \hat{H} and if α is a piecewise affine map from Y into \hat{G}, the pair (Y, α) induces a unique homomorphism h of $L^1(G)$ into $M(H)$ which satisfies (1). We call the pair (Y, α) the dual map of h after P. Eymard [3] (though slightly different from his definition).

For the rest of this paper, h denotes a homomorphism of $L^1(G)$ into $M(H)$ and (Y, α) denotes the dual map of h.

Lemma 1. If Y is an open subgroup of \hat{H} and α is a continuous homomorphism from Y into \hat{G}, then the range of h is contained in $L^1(H^\tau)$ for some $\tau \in \mathcal{I}(H)$.

Proof. We suppose first that $Y=\hat{H}$ and $\alpha(Y)$ is dense in \hat{G}, and then there exists a natural continuous isomorphism $\hat{\alpha}$ of G into H such that

$$ (\hat{\alpha}(x), r) = (x, \alpha(r)) \quad (x \in G, r \in \hat{H}). $$

We can introduce in H a locally compact group topology τ such that $\hat{\alpha}$ becomes an open continuous map of G into H^τ, and then $\hat{\alpha}$ induces the natural isomorphism of $L^1(G)$ into $L^1(H^\tau)$, which just coincides with h.

Next we suppose only that $\alpha(Y)$ is dense in \hat{G}. By the above considerations, we have an element $\tau \in \mathcal{I}(H/L)$ and a continuous isomorphism h of $L^1(G)$ into $L^1((H/L)^\tau)$ such that the dual map of h is (Y, α), where L denotes the annihilator of Y in H.

Let π be the natural map of H onto H/L. If we introduce in H a topology τ with a basis $\{\pi^{-1}(V) \cap W : V$ is open in $(H/L)^\tau$ and W is open in $H\}$, then τ is a locally compact group topology of H, and the map π induces an open continuous homomorphism of H^τ onto $(H/L)^\tau$. For each $f \in L^1((H/L)^\tau)$, put $h'(f) = f \circ \pi$, then $h'(f)$ belongs to $L^1(H^\tau)$ and $h'h= h$. Thus we have $h(L^1(G)) = h'h(L^1(G)) \subset L^1(H^\tau)$.

Finally we prove the general case. Let Λ be the closure of $\alpha(Y)$ in \hat{G}. Then there exists a homomorphism h'' of $L^1(G/K)$ into $M(H)$ with the dual map (Y, α), where K is the annihilator of Λ in G. Since $A(\Lambda)$ coincides with the set $\{f|_\Lambda : f \in A(\hat{G})\}$, we can reduce the problem to the preceding case; thus we have $h(L^1(G)) = h''(L^1(G/K)) \subset L^1(H^\tau)$ for some $\tau \in \mathcal{I}(H)$. This completes the proof.

Lemma 2. If Y is an open coset and α is an affine map, then we get the same conclusion as Lemma 1.

Proof. Let r_2 be an element of H such that $Y-r_2$ is an open subgroup of \hat{H}. There exist a continuous homomorphism β of $Y-r_2$ into \hat{G} and $r_1 \in \hat{G}$ such that

$$ \alpha(r) = \beta(r - r_2) - r_1 \quad (r \in Y). $$
By Lemma 1, there exist an element \(r \in \mathcal{X}(H) \) and a continuous homomorphism \(h' \) of \(L^1(G) \) into \(L^1(H') \) with the dual map \((Y \rightarrow r_2, \beta)\). If we define \(h_1 \) and \(h_2 \) by

\[
 h_1(f) = r_1 f \quad (f \in L^1(G)); \quad h_2(g) = r_2 g \quad (g \in L^1(H'))
\]

then \(h_1 \) and \(h_2 \) are homomorphisms of \(L^1(G) \) into \(L^1(H) \) and \(L^1(H') \) into \(L^1(H') \), respectively. Since \(h = h_2 h' h_1 \), the range of \(h \) is contained in \(L^1(H') \) and Lemma 2 is proved.

Let \(J(H) \) be the set of all the idempotent measures in \(M(H) \), and for each \(\mu \in J(H) \) we put \(S(\mu) = [r \in \hat{H} : \hat{\mu}(r) = 1] \).

Lemma 3. If \(\mu \) is an element of \(J(H) \), then there exist finitely many compact subgroups \(K_1, K_2, \ldots, K_n \) of \(H \) such that

(i) \(m_{K_i} \) and \(m_{K_j} \) are mutually singular for \(i \neq j \),

(ii) for \(i \) and \(j \), we have \(m_{K_i} * m_{K_j} = m_{K_i + K_j} \ll m_{K_i} \) (absolutely continuous with respect to \(m_{K_i} \)) for some \(l \),

(iii) \(\mu \ll \sum_{i=1}^{n} m_{K_i} \),

where \(m_{K} \) denotes the Haar measure of a compact group \(K \).

Proof. There exists a set \([K_1, K_2, \ldots, K_m]\) of finitely many compact subgroups of \(H \) which satisfies the conditions (i) and (ii) (cf. [5]). We can choose finitely many compact subgroups \(K_{m+1}, \ldots, K_n \) of \(H \) (if necessary) so that \([K_1, K_2, \ldots, K_n]\) satisfies the conditions (i), (ii) and (iii), and this completes the proof.

Lemma 4. If there exist an open coset \(\Lambda \) and an affine map \(\tilde{\alpha} \) of \(\Lambda \) into \(\hat{G} \) such that \(Y \subset \Lambda \), \(\tilde{\alpha}|_Y = \alpha \), then we get the conclusion of the theorem.

Proof. Since \(Y \) is an element of the coset ring of \(\hat{H} \), there exists \(\mu \in J(H) \) such that \(S(\mu) = Y \). Since \(\mu \) is determined by \(h \), we express \(\mu \) by \(j(h) \). Let \([K_1, K_2, \ldots, K_n]\) be a set of finitely many compact subgroups of \(H \) which satisfies (i), (ii) and (iii) of Lemma 3. We decompose \(\mu \) as

\[
 \mu = \lambda_1 + \lambda_2 + \cdots + \lambda_n \quad (i=1, 2, \ldots, n),
\]

and we proceed by induction on the number \(n \) of \([K_1, K_2, \ldots, K_n]\). Thus we suppose that Lemma 4 is true if \(n \leq k \), and prove that Lemma 4 is also true for \(n = k + 1 \).

We can suppose without loss of generality that \(K_n \) is minimal in the sense that \(K_i / K_n \cap K_i \) is infinite for \(i \neq n \). Then since \(\mu = \mu * \mu = \lambda_n * \lambda_n + \sum_{i \neq n} \lambda_i * \lambda_i \), we get \(\sum_{i \neq n} \lambda_i * \lambda_i \ll \sum_{i=1}^{n} m_{K_i} \) and \(\lambda_n \in J(H) \).

If we put

\[
 h_1: f \in L^1(G) \mapsto h(f) * \lambda_n * \mu \in M(H),
 h_2: f \in L^1(G) \mapsto h(f) * (\mu - \mu * \lambda_n) \in M(H),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
then h_1 and h_2 are homomorphisms which satisfy $h_1(f)+h_2(f)=h(f)$ ($f \in L^1(G)$). Since $[K_1, K_2, \ldots, K_{n-1}]$ satisfies the conditions (i), (ii) and (iii) of Lemma 3 for $\mu=j(h_2)$, we have by the assumption of the induction that $h_2(L^1(G)) \subseteq \sum_{r \in A} L^1(H')$ for some finite subset $A \subset \mathcal{I}(H)$, and we have only to prove the lemma for $h=h_1$. Therefore we can assume here without loss of generality that $\lambda_n * \mu = \mu$, that is $S(\lambda_n) \supseteq S(\mu)$. Obviously, λ_n is an irreducible idempotent, and hence there exist $r_1, r_2, \ldots, r_m \in \hat{H}$ such that $d\lambda_n = [(x, r_1) + \cdots + (x, r_m)] dm_{\lambda_n}$, where $r_i - r_j$ $(i \neq j)$ does not belong to the annihilator of λ_n.

For each i, let σ_i be an element of $J(H)$ such that $d\sigma_i = (x, r_i) dm_{\lambda_n}$ and let h_i be a homomorphism of $L^1(G)$ into $M(H)$ with the dual map $(S(\sigma_i) \cap \Lambda, \bar{a}|_{S(\sigma_i) \cap \Lambda})$. Let h'_i and h''_i be homomorphisms of $L^1(G)$ into $M(H)$ such that $h'_i(f) = h(f) * \sigma_i$ and $h''_i(f) = h(f) * (\sigma_i - \sigma_i * \mu)$, and then we have $h'_i(f) = h_i(f) - h''_i(f)$ ($f \in L^1(G)$). By Lemma 2, h_i maps $L^1(G)$ into $L^1(H')$ for some $\tau_i \in \mathcal{I}(H)$, and since $j(h''_i)$ is absolutely continuous with respect to $\sum_{i=1}^{n-1} m_{\lambda_i}$, we have again by the assumption of the induction that h''_i maps $L^1(G)$ into $\sum_{r \in B_i} L^1(H')$ for some finite subset $B_i \subset \mathcal{I}(H)$, and consequently we get

\[h(L^1(G)) \subseteq \sum_{i=1}^{m} h_i(L^1(G)) - \sum_{i=1}^{m} h''_i(L^1(G)) \subseteq \sum_{i=1}^{m} L^1(H'), \]

and this completes the proof.

The proof of the theorem. Let (Y, α) be the dual map of h. There exist a set of pairwise disjoint elements $\{Y_i\}_{i=1}^n$ of the coset ring of \hat{H}, a set of open cosets $\{K_i\}_{i=1}^n$ of \hat{H} and a set of affine maps $\{\alpha_i : K_i \to \hat{G}\}_{i=1}^n$ such that

\[Y = Y_1 \cup \cdots \cup Y_n, \quad K_i \supseteq Y_i, \quad \alpha|_{Y_i} = \alpha_i|_{Y_i} \quad (i = 1, 2, \ldots, n). \]

If we denote by h_i a homomorphism of $L^1(G)$ into $M(H)$ with the dual map $(Y_i, \alpha|_{Y_i})$ $(i = 1, 2, \ldots, n)$, then we have $h(f) = h_1(f) + \cdots + h_n(f)$ ($f \in L^1(G)$). By Lemma 4 we have $h_i(f) \in \sum_{r \in A_i} L^1(H')$ for some finite subset $A_i \subset \mathcal{I}(H)$, and hence $h(f)$ belongs to $\sum_{r \in A_i} L^1(H')$ for each $f \in L^1(G)$ and i, and thus the theorem is proved.

Remark. If we refer to [4], we can see that $\sum_{r \in \mathcal{I}(H)} L^1(H')$ is a subalgebra of $M(H)$ and that the norm closure of $\sum_{r \in \mathcal{I}(H)} L^1(H')$ in $M(H)$ is a proper closed subalgebra of $M(H)$ if H is not discrete. This means that the set of the elements of the form $h(x)$ ($x \in G$), where a LCA group G and a homomorphism h of $L^1(G)$ into $M(H)$ vary arbitrarily, constitutes the subalgebra $\sum_{r \in \mathcal{I}(H)} L^1(H')$ contained (if H is not discrete) in a proper closed subalgebra of $M(H)$.
REFERENCES

DEPARTMENT OF MATHEMATICS, NAGOYA INSTITUTE OF TECHNOLOGY, NAGOYA, JAPAN