Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Left centralizers of an $ H\sp{\ast} $-algebra


Authors: Gregory F. Bachelis and James W. McCoy
Journal: Proc. Amer. Math. Soc. 43 (1974), 106-110
MSC: Primary 46K15
DOI: https://doi.org/10.1090/S0002-9939-1974-0333745-7
MathSciNet review: 0333745
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit characterization is given of the left centralizers of a proper $ {H^\ast }$-algebra $ A$. Each left centralizer is seen to correspond to a bounded family of bounded operators, where each operator acts on a Hilbert space associated with a minimal-closed two-sided ideal of $ A$.


References [Enhancements On Off] (What's this?)

  • [1] W. M. Ching and J. S. W. Wong, Multipliers and $ {H^\ast }$-algebras, Pacific J. Math. 22 (1967), 387-395. MR 35 #5949. MR 0215106 (35:5949)
  • [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups; analysis on locally compact Abelian groups, Die Grundlehren der Math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378. MR 0262773 (41:7378)
  • [3] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450. MR 0159233 (28:2450)
  • [4] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. MR 39 #776. MR 0239419 (39:776)
  • [5] I. Kaplansky, Dual rings, Ann. of Math. (2) 49 (1948), 689-701. MR 10, 7. MR 0025452 (10:7b)
  • [6] C. N. Kellogg, Centralizers and $ {H^\ast }$-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749. MR 0193529 (33:1749)
  • [7] B. D. Malviya and B. J. Tomiuk, Multiplier operators on $ {B^\ast }$-algebras, Proc. Amer. Math. Soc. 31 (1972), 505-510. MR 0305085 (46:4215)
  • [8] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [9] P. P. Saworotnow, Trace class and centralizers of an $ {H^\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2305. MR 0267403 (42:2305)
  • [10] P. P. Saworotnow and J. C. Friedell, Trace class for an arbitrary $ {H^\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304. MR 0267402 (42:2304)
  • [11] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878. MR 0119112 (22:9878)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46K15

Retrieve articles in all journals with MSC: 46K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0333745-7
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society