Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on quasifibrations and manifolds


Author: Ralph Stöcker
Journal: Proc. Amer. Math. Soc. 43 (1974), 219-225
MSC: Primary 55F15
DOI: https://doi.org/10.1090/S0002-9939-1974-0334204-8
MathSciNet review: 0334204
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a closed $ {C^\infty }$-manifold which is the total space of a quasifibration over $ {S^n}$ with fibre $ {S^k}$. Then, in many cases, $ E$ has the homotopy type of an orthogonal $ {S^k}$-bundle over $ {S^n}$. The proof includes a classification theorem for certain quasifibrations which has further applications.


References [Enhancements On Off] (What's this?)

  • [1] A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math. (2) 58 (1953), 295-324. MR 15, 731. MR 0060820 (15:731f)
  • [2] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82. MR 26 #3069. MR 0145538 (26:3069)
  • [3] P. J. Hilton and J. Roitberg, Note on quasifibrations and fibre bundles, Illinois J. Math. 15 (1971), 1-8. MR 42 #8494. MR 0273617 (42:8494)
  • [4] I. M. James, On the decomposability of fibre spaces, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math., vol 168, Springer, Berlin, 1970, pp. 125-134. MR 43 #4038. MR 0278308 (43:4038)
  • [5] -, The transgression and Hopf invariants of a fibration, Proc. London Math. Soc. (3) 11 (1961), 588-600. MR 24 #A3650. MR 0133825 (24:A3650)
  • [6] I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. II, Proc. London Math. Soc. (3) 4 (1955), 148-166. MR 16, 948. MR 0068836 (16:948d)
  • [7] J. W. Milnor, On the Whitehead homomorphism J, Bull. Amer. Math. Soc. 64 (1958), 79-82. MR 21 #1594. MR 0102808 (21:1594)
  • [8] S. Sasao, On homotopy groups of certain complexes, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 605-630. MR 23 #A1376. MR 0124056 (23:A1376)
  • [9] J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246. MR 27 #4235. MR 0154286 (27:4235)
  • [10] G. W. Whitehead, On products in homotopy groups, Ann. of Math. (2) 47 (1946), 460-475. MR 8, 50. MR 0016672 (8:50b)
  • [11] J. H. C. Whitehead, On certain theorems of G. W. Whitehead, Ann. of Math. (2) 58 (1953), 418-428. MR 15, 642. MR 0060230 (15:642g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55F15

Retrieve articles in all journals with MSC: 55F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0334204-8
Keywords: Quasifibration, manifold, orthogonal bundle, fibre homotopy type
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society