INVERTIBLE MEASURE PRESERVING TRANSFORMATIONS
AND POINTWISE CONVERGENCE

J.-M. BÉLLEY

Abstract. An investigation of pointwise convergence of sequences \(\{ \sum_{j=-\infty}^{\infty} a_j f(T^j x) : k=1, 2, \cdots \} \) where \(f \) lies in the space \(L^1([0, 1]) \) of Lebesgue integrable functions on the unit interval, \(T \) is an invertible measure preserving transformation on \([0, 1]\), and the sequence of polynomials \(\{ \sum_{j=-\infty}^{\infty} a_j z^{-j} : k=1, 2, \cdots \} \) is uniformly bounded and pointwise convergent for all \(z \) such that \(|z|=1 \).

Spectral properties. An invertible measure preserving transformation \(T \) on the unit interval \(I \) is known to induce a unitary operator on the space \(L^2(I) \) of square integrable functions on \(I \) [6, p. 13]. By the spectral theorem [5, p. 71] there exists a spectral measure \(E \) on the Borel subsets of the unit circle \(C \) in the complex plane such that for any integer \(k \), \(U^k = \int z^k E(dz) \) in the sense of strong convergence. Let the resolution of the identity \(E_t, t \in [0, 2\pi] \), be given by \(E(\{ \exp(is) : 0 \leq s < t \}) \). Then [3, p. 482]

\[
E_t = \sum_{j \neq 0} \frac{\exp(ijt) - 1}{2\pi ij} U^{-j} + \frac{t}{2\pi} + \frac{E(\{1\}) - E(\{\exp(it)\})}{2}
\]

where, for each \(z \) in \(C \), \(E(\{z\}) = \lim(\sum_{j=-n}^{n} z^j U^{-j})/(2n+1) \) and the symbol \(\sum_{j \neq 0} \) denotes the limit as \(n \) tends to infinity of the sum \(\sum_{j=-n}^{n} z^j U^{-j} \).

Substituting the Fourier series

\[
\pi - \sum_{j \neq 0} \frac{\exp(ijs)}{ij} = s, \quad 0 < s < 2\pi,
\]

\[
\pi = s, \quad s = 0,
\]

on the right-hand side of the identity [1, p. 100]

\[
s = \pi + 32 \sum_{j=0}^{\infty} \frac{\sin(\frac{1}{2}(2j + 1)s) - (-1)^j \cos(\frac{1}{2}(2j + 1)s)}{\pi^2(2j + 1)^3} \quad (0 \leq s \leq 2\pi),
\]

and then integrating both sides with respect to the spectral measure.
for the unitary operator \(\exp(-it)U \) yields

\[
E_t = \frac{t}{2\pi} + \frac{1}{2} E(\{1\}) - \sum_{j \neq 0} \frac{U^{-j} \sum_{j=0}^{\infty} \exp(-i(2j+1)t) U^{(2j+1)/4}}{(2j+1)^3} - \frac{16}{\pi^3} \sum_{j=0}^{\infty} (-1)^j \left\{ \frac{\exp(-i(2j+1)t) U^{(2j+1)/4}}{(2j+1)^3} \right\}
\]

By the uniform boundedness of the series [7, p. 18] we can justify taking the integral inside the summation signs above.

The unitary operators \(U^{k/4}, k=0, \pm 1, \pm 2, \cdots \), are defined by \(U^{k/4} = \int z^{k/4} E(dz) \). Thus the convolution property for the spectral measure of a unitary operator with the multiplicative property [4, pp. 639, 640] permits us to establish that, since \(U \) is multiplicative, then so is \(U^{k/4} \).

For if \(f, g \) and their product \(fg \) lie in \(L^2(I) \) then

\[
U^{k/4}fg = \int z^{k/4} E(dz)fg = \int \int z^{k/4} E(w^{-1} dw) fE(dw)g
\]

Hence if \(f \) lies in \(L^2(I) \) with \(L^1 \) norm \(\|f\|_1 \) then there exists \(g \) in \(L^2(I) \) with \(L^2 \) norm \(\|g\|_2 \) such that \(f=g^2, \|f\|_1=\|g\|_2^2, \) and \(\|U^{k/4}f\|_1=\|U^{k/4}g\|_2^2=\|f\|_1 \). Using the identity above for \(E_t \) it now follows that there exists a constant \(K \) such that for any collection \(\{B_m: m=1, 2, \cdots\} \) of disjoint half-open interval subsets of \(C \) and any \(f \) in \(L^2(I) \) we have \(\|E(\bigcup B_m)f\|_1 \leq K\|f\|_1 \). By the usual measure theoretic argument (Dinculeanu [2]), for any \(f \) in \(L^2(I) \) and any Borel subset \(B \) of \(C \), \(\|E(B)f\|_1 \leq K\|f\|_1 \). Since \(L^2(I) \) is dense in \(L^1(I) \) we extend by continuity the operator \(E \) to \(L^1(I) \) and so (retaining the symbol \(E \) for the extension) \(\|E(B)f\|_1 \leq K\|f\|_1 \) for all \(f \) in \(L^1(I) \) and Borel subset \(B \) of \(C \). Note that the space \(L^\infty(I) \) of essentially bounded functions on \(I \) lies in \(L^2(I) \). Hence \(E \) is defined on \(L^\infty(I) \). We now deduce that for any \(h \) in \(L^\infty(I) \) with \(L^\infty \) norm \(\|h\|_\infty \) and any Borel \(B \) in \(C \), \(\|E(B)h\|_\infty \leq K\|h\|_\infty \). For if \(f \) lies in \(L^1(I) \), using \((f, h) \) to denote the integral of the product \(\bar{f}h \) (where \(\bar{h} \) is the complex conjugate of \(h \)) over \(I \), we get \((E(B)f, h) = (f, E(B)h) \) which is clear if \(f \) lies in \(L^2(I) \) and extends to \(L^1(I) \) by continuity.

Next let us show the existence of a constant \(K' \) such that for any \(h \) in \(L^\infty(I) \) and any sequence \(\{B_k\} \) of disjoint Borel subsets of \(C \), \(\|\sum |E(B_k)h|\|_\infty \leq K'\|h\|_\infty \). Otherwise there would exist some finite family
\{B_k: k=1, 2, \cdots, n\} \) of disjoint Borel subsets of \(C \) such that for some \(h \) in \(L^2(I) \), \(\sum |E(B_k)h| \) is "much" greater than \(\|h\|_\infty \) on some subset \(X \) of \(I \) of positive measure. Hence by considering the real and imaginary parts of \(E(B_k)h \) and all possible subsequences of \(\{B_k: k=1, 2, \cdots, n\} \), we see that there must exist some subsequence \(\{B_{k_j}\} \) for which either the real or imaginary part of \(E(\bigcup B_{k_j})h \) is "much" greater in absolute value than \(\|h\|_\infty \) on a subset of \(X \) of positive measure, i.e. \(\|E(\bigcup B_{k_j})h\|_\infty > K\|h\|_\infty \) which is a contradiction.

By now we have that for any given \(h \) in \(L^\infty(I) \), \(E(\cdot)h(x) \) is a complex measure on the Borel subsets of \(C \) with total variation not exceeding \(K\|h\|_\infty \) [8, p. 117] for almost all \(x \) in \(I \). Hence we can define in the usual way the integral \(\int q(x, z)E(dz)h(x) \) of a bounded Borel measurable function \(q(x, z) \) on \(I \times C \) to yield an essentially bounded function of \(x \), i.e. an element of \(L^\infty(I) \). Furthermore if \(\{q_k(x, z)\} \) is a pointwise convergent uniformly bounded sequence of Borel measurable functions then by Lebesgue's dominated convergence theorem the integrals \(\int q_k(x, z)E(dz)h(x) \) form a uniformly bounded (in \(L^\infty(I) \)) almost everywhere pointwise convergent sequence of functions on \(I \).

Convergence properties. Consider a sequence of polynomials \(p_k(z) = \sum_{j=-\infty}^{\infty} a_j^k z^{-j}, k=1, 2, \cdots \), where \(z \) lies in \(C \) and \(a_j^k \) are complex coefficients all but a finite number of which vanish. For a given function \(f \) in \(L^1(I) \) define \(p_k(U)f \) to be \(\sum_{j=-\infty}^{\infty} U^{-j}(a_j^k f) \), i.e. \(\sum_{j=-\infty}^{\infty} a_j^k U^{-j}f \).

Theorem. If \(U \) is an operator on \(L^1(I) \) induced by an invertible measure preserving transformation on the unit interval \(I \) and \(\{p_k(z): k=1, 2, \cdots\} \) a pointwise convergent sequence of uniformly bounded (trigonometric) polynomials on the unit circle then, for all \(f \) in \(L^1(I) \), \(p_k(U)f(x) \) converges pointwise for almost all \(x \) in \(I \) as \(k \) tends to infinity.

Proof. If \(p_k(U)f \) does not converge pointwise almost everywhere, there exists a nonzero constant \(d \) such that for all \(x \) in a subset \(Y \) of \(I \) of positive measure \(|Y| \)

\[
\sup_{k', k'' \geq m} |p_{k'}(U)f(x) - p_{k''}(U)f(x)| > d
\]

for all integers \(m \). Hence given any \(m \) there exists an integer \(M \geq m \) and measurable functions \(k'(x), k''(x); m \leq k'(x), k''(x) \leq M \) such that for some function \(h, |h| = 1 \), we have

\[
\left(\sum_j U^{-j}(a_j^{k'(x)} - a_j^{k''(x)})f(x), h(x) \right) > \frac{d |Y|}{2}.
\]
Note that \(M \) was chosen to make
\[
\sup_{m \leq k', k' \leq M} |p_k(U)f(x) - p_{k'}(U)f(x)| > d
\]
for all \(x \) in a subset of \(Y \) of measure greater than \(|Y|/2 \). But by the measure preserving property of the operator inducing \(U \) we have
\[
\left(\sum_j U^{-j}(a_j^{k'(x)} - a_j^{k''(x)})f(x), h(x) \right) = \left(f(x), \sum_j (a_j^{k'(x)} - a_j^{k''(x)})U^j h(x) \right)
\]
and by the discussion at the end of the previous section this tends to zero as \(m \) tends to infinity, which is a contradiction. \(\text{Q.E.D.} \)

The above could be generalized to not necessarily invertible transformations on the real line, which would make Birkhoff's ergodic theorem [6, p. 18] a special case of the theorem above by taking the polynomial \(\sum_{j=1}^k z^{-j}(2k+1) \) for \(p_k(z) \). In fact we could go even further by considering operators which are \(L^1 \) and \(L^2 \) contractions with the multiplicative property by using the generalized spectral measures associated with them [9, pp. 12–18].

BIBLIOGRAPHY