Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a class of analytic functions

Author: Nobuyuki Suita
Journal: Proc. Amer. Math. Soc. 43 (1974), 249-250
MSC: Primary 30A40
MathSciNet review: 0335785
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the class $ {\mathfrak{E}_0}$ of analytic functions $ f$ in a plane region $ \Omega \notin {O_{AB}}$ vanishing at $ {z_0} \in \Omega $ and such that $ 1/f$ omits a set of values of area $ \geqq \pi $ is not compact. Here $ {O_{AB}}$ denotes the class of Riemann surfaces which have no nonconstant bounded analytic functions. We remark that the extremal functions maximizing $ \vert f'({z_0})\vert$ in $ {\mathfrak{E}_0}$ coincide with linear transformations $ w/(1 - cw)$ of those for the same problem in the class $ {\mathfrak{B}_0}$ consisting of functions $ f$ such that $ f({z_0}) = 0$ and $ \vert f(z)\vert \leqq 1$, i.e. so-called Ahlfors functions. Here $ 1/c$ is an omitted value of the Ahlfors function.

References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic nullsets, Acta Math. 83 (1950), 101-129. MR 12, 171. MR 0036841 (12:171c)
  • [2] A. Denjoy, Sur fonctions analytiques uniformes qui restant continues sur un ensemble parfait discontinu de singularités, C.R. Acad. Sci. Paris 149 (1909), 1154-1156.
  • [3] S. Ja. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Mat. Sb. 54 (96) (1961), 3-50; English transl., Amer. Math. Soc. Transl. (2) 43 (1964), 215-266. MR 25 #182. MR 0136720 (25:182)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A40

Retrieve articles in all journals with MSC: 30A40

Additional Information

Keywords: Extremal problem, compact family, bounded functions
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society