Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of Hilbert space


Author: Ronald E. Bruck
Journal: Proc. Amer. Math. Soc. 43 (1974), 173-175
MSC: Primary 46C05
DOI: https://doi.org/10.1090/S0002-9939-1974-0341038-7
MathSciNet review: 0341038
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A real Banach space $ E$ of dimension $ \geqq 3$ is an inner product space iff there exists a bounded smooth convex subset of $ E$ which is the range of a nonexpansive retraction.


References [Enhancements On Off] (What's this?)

  • [1] E. Bishop and R. R. Phelps, The support functionals of convex sets, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R.I., 1963, pp. 27-35. MR 27 #4051. MR 0154092 (27:4051)
  • [2] R. E. Bruck, Jr., Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-356. MR 0341223 (49:5973)
  • [3] D. G. de Figueiredo and L. A. Karlovitz, On the extension of contractions on normed spaces, Proc. Sympos. Pure Math., vol. 18, Part 1, Amer. Math. Soc., Providence, R.I., 1970, pp. 95-104. MR 43 #877. MR 0275120 (43:877)
  • [4] S. Kakutani, Some characterizations of Euclidean space, Japan J. Math. 16 (1939), 93-97. MR 1, 146. MR 0000895 (1:146d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46C05

Retrieve articles in all journals with MSC: 46C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0341038-7
Keywords: Nonexpansive retract
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society