Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tensor products and almost periodicity


Author: Hugo D. Junghenn
Journal: Proc. Amer. Math. Soc. 43 (1974), 99-105
MSC: Primary 47D05; Secondary 46M05
DOI: https://doi.org/10.1090/S0002-9939-1974-0365223-3
MathSciNet review: 0365223
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ and $ F$ be locally convex spaces and $ G$ their completed $ \varepsilon $-tensor product. It is shown that if $ S$ and $ T$ are weakly almost periodic equicontinuous semigroups of operators on $ E$ and $ F$ respectively, then, under mild restrictions on $ E$ or $ F, S \otimes T$ is a weakly almost periodic equicontinuous semigroup of operators on $ G$, and the almost periodic and flight vector subspaces of $ G$ are related in a natural way to the corresponding subspaces of $ E$ and $ F$ via the $ \varepsilon $-tensor product. Furthermore, if $ E$ and $ F$ both decompose into a direct sum of these subspaces then so does $ G$.


References [Enhancements On Off] (What's this?)

  • [1] J. Berglund and K. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math., no. 42, Springer-Verlag, New York and Berlin, 1967. MR 36 #6531. MR 0223483 (36:6531)
  • [2] K. deLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24 #A1632. MR 0131784 (24:A1632)
  • [3] W. F. Eberlain, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 12, 112. MR 0036455 (12:112a)
  • [4] R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 19, 561. MR 0088674 (19:561b)
  • [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [6] K. Jacobs, Ergodentheorie und fastperiodische Functionen auf Halbgruppen, Math. Z. 64 (1956), 298-338. MR 17, 988. MR 0077092 (17:988b)
  • [7] H. Junghenn, Almost periodic compactifications and applications to one-parameter semigroups, Thesis, The George Washington University, Washington, D.C., 1971.
  • [8] H. H. Schaefer, Topological vector spaces, Graduate Texts in Math., Springer-Verlag, New York, 1971. MR 0342978 (49:7722)
  • [9] R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N.J., 1950. MR 12, 186. MR 0036935 (12:186e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 46M05

Retrieve articles in all journals with MSC: 47D05, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0365223-3
Keywords: Semigroup of operators, $ \varepsilon $-tensor product, weakly almost periodic, almost periodic, flight vector, reversible vector
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society