Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The codimension of the boundary of a lattice ideal


Author: J. W. Lea
Journal: Proc. Amer. Math. Soc. 43 (1974), 36-38
MSC: Primary 06A20
DOI: https://doi.org/10.1090/S0002-9939-1974-0371754-2
MathSciNet review: 0371754
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a compact connected topological lattice of finite codimension $ n$, the boundary of a proper principal ideal has codimension less than $ n$. It follows that the boundaries of proper intervals also have codimension less than $ n$.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Anderson, One dimensional topological lattices, Proc. Amer. Math. Soc. 10 (1959), 715-720. MR 21 #6401. MR 0107678 (21:6401)
  • [2] -, On the distributivity and simple connectivity of plane topological lattices, Trans. Amer. Math. Soc. 91 (1959), 102-112. MR 21 #1365. MR 0102575 (21:1365)
  • [3] R. J. Koch, On monothetic semigroups, Proc. Amer. Math. Soc. 8 (1957), 397-401. MR 19, 290. MR 0087033 (19:290e)
  • [4] A. Y. W. Lau, Small semilattices and costability, Dissertation, University of Houston, Houston, Tex., 1971. MR 0292725 (45:1808)
  • [5] J. D. Lawson, The relation of breadth and codimension in topological semilattices. II, Duke Math. J. 38 (1971), 555-559. MR 44 #125. MR 0282891 (44:125)
  • [6] -, Intrinsic topologies in lattices and semilattices, Pacific J. Math. 44 (1973), 593-602. MR 0318031 (47:6580)
  • [7] E. D. Shirley and A. R. Stralka, Homomorphisms on connected topological lattices, Duke Math. J. 38 (1971), 483-490. MR 0279776 (43:5497)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A20

Retrieve articles in all journals with MSC: 06A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0371754-2
Keywords: Compact semilattice, compact lattice, ideal
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society