A SPECTRAL SEQUENCE FOR THE INTERSECTION OF SUBSPACE PAIRS

RICHARD N. CAIN

Abstract. A general-homology spectral sequence that generalizes the Mayer-Vietoris exact sequence is established between the intersection of a family of subspace pairs and the system of partial unions of the family. The basis of the construction is a topological analogue of the "bar construction" of homological algebra.

We shall show here that a finite family \(\mathcal{P} = \{(X_i, A_i) | i \in I\} \) of subspace pairs\(^1\) in a space \(X \) have, for each general homology theory \(h_* \), a spectral sequence

\[
E_1^{p,q} \cong \bigoplus_{Ns=n} h_j \left(\bigcup_{s} X_i, \bigcup_{s} A_i \right) \Rightarrow h_{j-n} \left(\bigcap_{I} X_i, \bigcap_{I} A_i \right)
\]

\((s \subseteq I), Ns being (number of members in s) - 1\). This is just the spectral sequence of a cover with the roles of union and intersection interchanged. Its connection with the Mayer-Vietoris sequence will be examined below, and we shall derive from it the spectral sequence of the homology sheaf of \(X \).

Construction of (a). Start with any finite set \(U (= the universe) that contains \(I \) as a subset, and define (using \(T \) to denote the based unit interval, while \(J \) to \(\gamma \) \(\gamma J \) \(\gamma J \) for based spaces \(Y \) and finite sets \(J \))

\[
\begin{align*}
\nabla_s &= \bigwedge_{s} \partial T \wedge \bigwedge_{U-s} T \quad (s \subseteq U), \\
K &= \bigcup_{a \in U} \nabla\{a\} = \partial \nabla \emptyset, \\
C &= \{\emptyset\} \cup \bigcup_{a \in U-I} \nabla\{a\} = \bigwedge_{I} T \wedge \partial \bigwedge_{U-I} T, \\
M &= X \times C \cup \bigcup_{s \subseteq I} A_i \times \nabla s, \\
L^n &= M \cup \bigcup_{s \subseteq I; Ns \geq n} X_i \times \nabla s \quad (n \in \mathbb{Z}) \\
L &= L^0 = X \times C \cup \bigcup_{s \subseteq I} X_i \times \nabla s.
\end{align*}
\]

Received by the editors February 16, 1973.
AMS (MOS) subject classifications (1970). Primary 55H05, 55H25; Secondary 55C05.
Key words and phrases. Spectral sequence, general homology, general cohomology, cover, duality.

\(^1\) Assumed to be subcomplex pairs under some CW complex structure on \(X \).

© American Mathematical Society 1974

229

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We require $I \neq \emptyset$ but permit $U = I$. Caution. Here ∂ is used in the context of based spaces, so $\partial \partial T = \{ \ast \}$, not \emptyset. The formulas for the spectral sequence are as follows (as in [1, p. 108 ff.] for any filtered space):

$$E^n_{r,j} = \frac{\text{Im}[h_p(L^n, L^{n+r}) \to h_p(L^{n-r+1}, L^{n+r})]}{\text{Im}[h_p(L^{n+1}, L^{n+r}) \to h_p(L^{n-r+1}, L^{n+r})]} \quad (n, j \in \mathbb{Z}; \ r = 1, 2, \cdots)$$

where $p = j - n + NU$ and maps are induced by inclusion,

(c) $d^n_{r,j} = \text{homomorphism } E^n_{r,j} \to E^n_{r,j+r-1}$ induced by ∂, for the triple (L^n, L^{n+r}, L^{n+2r}),

$$u^n_{r,j} = \text{isomorphism } E^n_{r+1,j} \to E^n_{r,j+r}$ induced by $h_p(\ast)$ for the inclusion $(L^n, L^{n+r+1}) \subset (L^n, L^{n+r})$.

Thus, $E^n_{\infty,j} = E^n_{r,j}$ for large r, $= F^nG_{j-n}/F^{n+1}G_{j-n}$, where

$$G_q = h_{q+NU}(L, M) \quad (q \in \mathbb{Z}),$$
$$F^nG_q = \text{Im}[h_{q+NU}(L^n, M) \to h_{q+NU}(L, M)].$$

(Note that $G_\ast = F^0G_\ast \supset F^1G_\ast \supset \cdots \supset F^{N+1}G_\ast = \{0\}$.)

Define also, for each $a \in U$ and $s \subseteq U$ containing a,

$$v(a): h_q(\nabla s, \partial \nabla s) \xrightarrow{\text{exclusion}} h_q(\partial \nabla s', \partial \nabla s' - \nabla^\#s) \quad (s' = s - \{a\}),$$
$$\mu(a): h_{q+1}(\nabla s', \partial \nabla s') \xrightarrow{\delta_{q+1}} h_q(\partial \nabla s', \partial \nabla s' - \nabla^\#s),$$
$$\sigma(a) = \mu(a)^{-1}v(a),$$

where $\nabla^\#(\cdot) = \nabla(\cdot) - \partial \nabla(\cdot)$ and $h_\ast = \text{any general homology theory}, q \text{ any integer}$. For distinct $a_1, \cdots, a_k \in s \subseteq U \ (k \geq 1)$, denote $s - \{a_1, \cdots, a_k\}$ as s'' and define

(d, Cont’d.) $\sigma(a_\ast): h_q(\nabla s', \partial \nabla s') \xrightarrow{\text{exclusion}} h_{q+k}(\nabla s'', \partial \nabla s'')$ as $\sigma(a_1) \cdots \sigma(a_k)\sigma(a_\ast)$, where a_\ast means (a_1, \cdots, a_n). $\sigma(a_\ast)$ is alternating, because, for any permutation of a_\ast, the corresponding coordinate transformation of $\nabla s''$ permutes the factors of $\sigma(a_\ast)$ in the same way.

Now let $a_\ast = (a_0, \cdots, a_{NU})$ be a choice of numbering of U, and for each nonempty subset $s \subseteq I$ let $i_\ast^s = (i_0^s, \cdots, i_N^s)$ be a choice of numbering of s. They, together with σ and Lemmas 1, 2 below, determine two
isomorphisms:

\[h_q \left(\bigcap_I X_i, \bigcap_I A_i \right) \]

\[\cong (-1)^{\sum N_3 \sigma(i_n)} \]

\[h_{q+NU+1} \left(\left(\bigcap_I X_i, \bigcap_I A_i \right) \times (\nabla \emptyset, \nabla \emptyset) \right) \]

(Lemma 1) \[\cong h_{q+NU+1} \text{ of the homology theory} \]

\[h_* = h_* \left((\bigcap_I X_i, \bigcap_I A_i) \times (-)\right) \]

\[\Psi_j \lambda_{\emptyset} \]

\[h_{q+NU} \left(\left(\bigcap_I X_i, \bigcap_I A_i \right) \times (K, C) \right) \]

(Lemma 1) \[\cong h_{q+NU} \subset \]

\[h_{q+NU} (L, M) \]

\[(e) \]

\[\bigoplus_{N_S = n, S \subseteq I} h_j \left(\bigcup_S X_i, \bigcup_S A_i \right) \]

\[\cong (-1)^{\sum N_3 \sigma(i_n)} \]

\[h_p \left(\left(\bigcup_S X_i, \bigcup_S A_i \right) \times (\nabla S, \nabla S) \right) \]

(Lemma 2) \[\cong \sum h_p \subset \]

\[h_p (L^n, L^{n+1}) \]

\[\sum \lambda_{\emptyset} \]

\[\bigoplus_{N_S = n, S \subseteq I} h_* (L^n, L^{n+1}) \]

\[\bigoplus \]

\[E_{1; j} \]

\[(q, n, j \in \mathbb{Z}) \text{ which combine with formulas (c) to give the formula (a).} \]

Lemma 1. \(\lambda_{\emptyset} \) is an isomorphism.

Proof. (Referring to (e).) \(\partial_{q+NU+1} \) is bijective by contractibility of \((\nabla \emptyset, C) = \bigwedge_T T \wedge (\bigwedge_{U \to T} T, \partial \bigwedge_{U \to T} T) \). For bijectivity of \(h_{q+NU} \subset \) it suffices by the Five Lemma to consider the case \(A_i = \emptyset \) (all \(i \in I \)). Define

\[L^n = X \times C \cup \bigcup_{S \subseteq I; N_S \equiv n} \left[\bigcap S X_i \times \bigcup_S \nabla \{i\} \right] \]

\((n \in \mathbb{Z}) \).

\[h_\ast (L^n, L^{n+1}) \cong \bigoplus_{N_S = n} h_\ast \left(\left(\bigcap S X_i, \bigcup_S X_i \cap \bigcap_S X_i \right) \times (C \cup \bigcup_S \nabla \{i\}, C) \right) \]
by additivity of homology, \(\cong \{0\} \) by contractibility of
\[(C \cup \bigcup_i \nabla \{i\}, C) = \bigwedge_{i-s} T \wedge \left(\partial_{s \cup (U-I)} T, \bigwedge_{i-s} T \wedge \partial_{U-I} T \right), \]
assuming \(0 \leq n < NI \). \(h_* (\bigcap_i X_i \times (K, C)) \cong h_* (L^{(NI)}, X \times C) \) by excision, \(\cong h_* (L^{(NI-1)}, X \times C) \cong \cdots \cong h_* (L^0, X \times C) = h_* (L, X \times C) \) by exactness using above \(\{0\} \).

Lemma 2. \(\sum \lambda_s \) is an isomorphism.

Proof. Additivity of homology. \(\square \)

Comparison with the Mayer-Vietoris sequence. Since (a) relates the various unions of the pairs \(\mathcal{P} \) to their intersection it brings to mind the Mayer-Vietoris sequence. (a) is in fact a generalization of the latter, as we shall now show. (The Mayer-Vietoris sequence is the \(NI=1 \) case of \(\epsilon, \delta^0, \beta \) below.)

For any \(n \in \mathbb{Z} \) let \(S_n(I) = \{ i_* = (i_0, \cdots, i_n) | i_0, \cdots, i_n \in I \} \), which is to entail that \(S_n(I) = \emptyset \) for negative \(n \). Using \(X_{i_*} \) to mean \(X_{i_0} \cup \cdots \cup X_{i_n} \), define \(C^n(\mathcal{P}; h_j(\bigcup \cdot)) \) \((j \in \mathbb{Z}) = \) subgroup of \(\prod_{i_* \in S_n(I)} h_j (X_{i_*}, A_{i_*}) \) consisting of alternating members \(\xi = \{ \xi_{i_*} | i_* \in S_n(I) \} \) for which \(\xi_{i_*} = 0 \) whenever two or more of \(i_0, \cdots, i_n \) are equal, and note that
\[C^n(\mathcal{P}; h_j(\bigcup \cdot)) \cong \bigoplus_{N_s=n; s \subseteq I} h_j \left(\bigcup_{i_* \subseteq I} X_{i_*} \cup A_{i_*} \right) \]
under the correspondence \(\xi \mapsto \{ \xi_{i_*} | N_s=n, s \subseteq I \} \). Denote by \(\Phi^n_j \) the composite of \(\varphi^n_j \) with this isomorphism.

Lemma 3. The following diagram commutes:
\[
\begin{array}{ccccccc}
E^0_{1;j} & \rightarrow E^1_{1;j} & \rightarrow & \cdots \\
\downarrow d^0_{1;j} & & & \downarrow d^1_{1;j} & & & \downarrow d^1 \\
E^1_{0;j} & \rightarrow E^0_{1;j} & \rightarrow & \cdots
\end{array}
\]
where
\[d^0_{1;j} = d^1_{1;j} = d^1 \]
and
\[\delta^n(\xi)_{i_*} = \sum_{0 \leq k \leq n+1} (-1)^k \xi_{i_*+k} | X_{i_*} \cup A_{i_*} \]
\[(n \in \mathbb{Z}, \xi \in C^n(\mathcal{P}; h_j(\bigcup \cdot)), i_* \in S_{n+1}(I)) \]
i_* (k) being \((i_0, \cdots, i_{k-1}, i_{k+1}, \cdots, i_{n+1}) \).
Proof. For the square involving δ^n for some n, $0 \leq n \leq NI$, we consider an arbitrary element of $C^n(\mathcal{P}; h_j(\cup \cdot))$ of the form $\chi(i_*; \theta)$ defined as follows: i_* is a numbering of a subset $s \subseteq I$ with $N_s = n$, θ belongs to $h_j(\bigcup X_i, \bigcup A_i)$, and $\chi(i_*; \theta)i_* = \pm \theta$ or 0, depending upon whether i'_* is an even or odd permutation of i_* or not a permutation of i_*, respectively. $\delta^n\chi(i_*; \theta) = \sum_{i \in I-s} \chi(ii_*; \theta|x_{ii_*}. A_{ii_*})$. In the commutative diagram

$$h_p(\nabla s, \partial \nabla s)^{\{u(i)\}} \xrightarrow{\oplus h_{p-1}(\partial \nabla s, \partial \nabla s - \nabla^#(s \cup i))} \oplus h_{p-1}(\nabla(s \cup i), \partial \nabla(s \cup i))$$

assume $h_* = h_*((X_{i_*}, A_{i_*}) \times \cdot)$, that each $R^{i_*}_{i_*}$ is induced by the appropriate inclusion, and each sum or union is taken over $\{i|i \in I-s\}$. We have that $d^n_1 : h_* = h_{p-1}(\cdot) \partial_p$, etc., $= \sum \lambda_{i \cup i} R^{i_*}_{i_*} \sigma(i)^{-1}$. Therefore,

$$(-1)^{nU} d^n_1 \Phi^n_{ij} \chi(i_*; \theta) = d^n_1 : \lambda_{i_*} \sigma(i_*)^{-1} \sigma(a_*) \theta$$

$$= \sum \lambda_{i \cup i} R_{i_*}^{i_*} \sigma(i)^{-1} \sigma(a_*) \theta$$

$$= \sum \lambda_{i \cup i} \sigma(i)^{-1} \sigma(a_*) (\theta|x_{ii_*}. A_{i_*})$$

$$= (-1)^{nU} \cdot \Phi^{n-1} \delta^n \chi(i_*; \theta).$$

We have thus proved the square commutative, since the $\chi(i_*; \theta)$’s generate $C^n(\mathcal{P}; h_j(\cup \cdot))$. For the square involving ϵ, the same argument works with h_* redefined as $h_*((\bigcap X_i, \bigcap A_i) \times \cdot)$, s replaced by \varnothing, and d^n_1 replaced by κ_\varnothing. □

Lemma 4. If $A_i = \varnothing$ (all $i \in I$), the following diagram commutes:

$$C^{NI}(\mathcal{P}; h_j(\cup \cdot)) \xrightarrow{\beta} h_{j-NI}(\bigcap X_i) \xrightarrow{\Phi_j^{NI}} h_{j-NI}(\bigcap X_i)$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where β has the formula

$$C^{NI}(\mathcal{P}; h_j(\cup \cdot)) \cong h_j\left(\bigcup_i X_i \right) \to h_j\left(\bigcup_i X_i, \bigcup_{j < NI} X_{(j)}\right)$$

$$\cong \text{excision} \quad h_j\left(X_{(NI)}, \bigcup_{j < NI} X_{(j)} \cap X_{(NI)}\right)$$

$$\cong (-1)^{(NI)\beta_1 \beta_2 \cdots \beta_{NI}} \quad h_{j-\text{NI}}\left(\bigcap_i X_i\right) \quad (X_{(j)} = X_{ij}),$$

each β_k ($1 \leq k \leq NI$) being the composite

$$h_{j-\text{NI}+k}\left(\bigcap_{j \geq k} X_{(j)}, \bigcup_{j < k} X_{(j)} \cap \bigcap_{j \geq k} X_{(j)}\right)$$

$$\downarrow \delta_{j-\text{NI}+k}$$

$$h_{j-\text{NI}+k-1}\left(\bigcup_{j < k} X_{(j)} \cap \bigcap_{j \geq k} X_{(j)}, \bigcup_{j < k-1} X_{(j)} \cap \bigcap_{j \geq k-1} X_{(j)}\right)$$

$$\cong \text{excision} \quad h_{j-\text{NI}+k-1}\left(\bigcup_{j \geq k-1} X_{(j)}, \bigcup_{j < k-1} X_{(j)} \cap \bigcap_{j \geq k-1} X_{(j)}\right).$$

Proof. Omitted. Consists of comparing each β_k with the appropriate form of $\sigma(i^T_j)^{-1}$ in one large commutative diagram. \(\square\)

Independence from U. Let $U^+ = U \oplus \{a\}$ for some point a apart from U, and indicate by a superscript $+$ the U^+-version of each of the notions (b)–(e). To prove that the choice of U is immaterial it suffices to prove $(c) \cong (c^+)$, $(e) \cong (e^+)$. We therefore define an isomorphism

$$l^{n,m}: h_p(L^n, L^m) \to h_{p^+}(L^{n^+}, L^{m^+})$$

as follows, for n, j as in (c) and $m \geq n$:

$$h_p(L^n, L^m) = h_p^{(n,m)}\left(\partial \wedge T, \{\ast\}\right)$$

$$\cong l^{p+1}\left(\partial \wedge T, \{\ast\}\right)$$

Here $h_p^{(n,m)}$ is the general homology theory of based compact pairs (Y, B) with formula $h_p^{(n,m)}(Y, B) = h_p(L^n(Y), L^m(Y) \cup L^n(B))$, $L^n(Y)$ being $X \times C_\ast Y \cup \cup_{s \geq 1} \cup_{s \in I} A_s \times \nabla_s Y \cup \cup_{s \in \bar{I}; \bar{N}_s \geq n} [\cup_{s} X_t \times \nabla_s Y]$. Then, $(-1)^{j-n-1}l^{n,n^+}$ induces an isomorphism $E^{r,j}_n \to E^{r,j}_n$ $(n, j \in \mathbb{Z}; r = 1, 2, \cdots)$ that carries $d^{r,j}_n$ into $d^{r,j}_n$, Φ^+_j (for $r = 1$) into Φ^+_j, etc., as required. We assume that $a^+_r = a^+_r a$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Functoriality. Constructing (a) is more difficult than constructing the spectral sequence of a cover in that the underlying spaces (b) do not depend functorially on \((X, I, \mathcal{P})\). \(U\) has been introduced as a remedy.

We assume that a morphism from \((X, I, \mathcal{P})\) to another such triple \((Y, J, \mathcal{Q})\), \(\mathcal{Q}\) being a finite family \(\{(Y_j, B_j)\}_{j \in J}\) of subspace pairs in a space \(Y\), is a map \(f: X \to Y\) of spaces together with a map \(\pi: J \to I\) of sets such that \((fX_{x_j}, fA_{x_j}) \subset (Y_j, B_j) \quad (j \in J)\). Evidently \(C^n(\mathcal{Q}; h_q(\bigcup \cdot))\) \((n, q \in \mathbb{Z})\) depends functorially on \((X, I, \mathcal{P})\) if \((f; \pi)\) is regarded as inducing the map \(C^n(f; \pi): C^n(\mathcal{P}; h_q(\bigcup \cdot)) \to C^n(\mathcal{Q}; h_q(\bigcup \cdot))\) with the formula \((C^n(f; \pi)\xi)_j = h_q(f; \pi)\xi_j \quad (\xi \in C^n(\mathcal{P}; h_q(\bigcup \cdot)), j \in S_n(J))\), \(h_q(f; \pi)\xi_j\) being the homomorphism \(h_q(X_{x_j}, A_{x_j}) \to h_q(Y_{y_j}, B_{y_j})\) induced by \(f|_{X_{x_j}}\). Similarly, \(h_*(\bigcap I X_i, \bigcap I A_i)\) is functorial, the induced map to be denoted \(h_*(f; \bigcap)\).

Let primes signify the \((Y, J, \mathcal{Q})\)-version of the notions (b)-(e). To show that \((c), \Psi_*, \Phi_*\) depend functorially on \((X, I, \mathcal{P})\), we need only produce a homomorphism of \((c)\) to \((c')\) which, when considered along with \(C^*\) and \(h_*(f; \bigcap)\), maps \(\Psi_*, \Phi_*\) to \(\Psi'_*, \Phi'_*\) respectively. It is easy to see that this map of \((c)\) to \((c')\) is a fortiori unique and functorially dependent on the morphism \((f; \pi)\).

We start by assuming \(U' = U \supset I \oplus J\). Define \(\omega: \bigwedge_U T \to \bigwedge_V T\) to be the involution \(\bigwedge_{U-\{\pi J \cup J\}} \omega_i\), where, for each \(i \in \pi J\),

\[
\omega_i\left(t_i \wedge \bigwedge_{\pi-1(i)} t_j\right) = m \wedge \bigwedge_{\pi-1(i)} (t_j t_j/m)
\]

\((t_i, t_j \in T\) for \(j \in \pi^{-1}(i))\), \(m\) being \(\text{Max}_{\pi^{-1}(i)} t_j\). It is easily shown that \(\omega \vee \{i\} = \bigcup_{\pi^{-1}(i)} \vee \{j\}\) for \(i \in \pi J\), while \(\omega \vee \{i\} \subset C'\) for \(i \in I-\pi J\). The consequence is \((f \times \omega)L^n \subset L^n (n \in \mathbb{Z})\), with an induced homomorphism \(L^n, m: h_p(L^n, L^m) \to h_p(L'^n, L'^m) (m \geq n)\). The map \((-1)^{\text{number of members in } \pi J}\) \(L^n, n+r\) induces the required \(E^r_{n,j} \to E^r_{n,j} (n, j \in \mathbb{Z}; r=1, 2, \cdots)\). (The power of \((-1)^i\) is the degree of \(\omega_i\).

The homology sheaf. Let \(\mathcal{P} = \{(X, A \cup (X- U^i))| i \in I\} = \mathcal{P}_\mathcal{U}\) for some finite open cover \(\mathcal{U} = \{U^i|i \in I\}\) of \(X\), \(A\) being some subspace. Evidently

\[
h_*\left(\bigcap_I X_i, \bigcap_I A_i\right) = h_*(X, A),
\]

\[
C^*(\mathcal{P}_\mathcal{U}; h_*(\bigcup \cdot)) = C^*(\mathcal{U}; h^X, A),
\]

where \(h^X, A\) is the graded presheaf \(\{h_*(X, A \cup (X- \emptyset))| \text{open } \emptyset \subset X\}\). Thus, we obtain a spectral sequence

\[
E^n_{2,j} \cong H^n(\mathcal{U}; h^X, A) \Rightarrow h_{j-n}(X, A).
\]
For X compact, the direct limit of (f), as \mathcal{U} is refined, is a spectral sequence
\[(g)\quad E^n_{0,j} \cong H^n(X; \mathcal{H}^X_{j,A}) \Rightarrow h_{j-n}(X, A),\]
where $\mathcal{H}^X_{j,A}$ is the induced sheaf of h^X.A. As A approximates an open set V from within, the direct limit of (g) is
\[(h)\quad E^n_{0,j} \cong H^n(X, V; \mathcal{H}^X_{j}) \Rightarrow h_{j-n}(X, V).\]

\mathcal{H}^X_* is called the homology sheaf of X. If $\mathcal{H}^X_j \cong \{0\}$ except for $j=j_0$ (\(=\) some integer), e.g., if X is a j_0-manifold and h_* is standard, then (h) collapses to a family of isomorphisms
\[H^n(X, V; \mathcal{H}^X_{j_0}) \cong h_{j_0-n}(X, V) \quad (n \in \mathbb{Z}).\]
(Compare to [2].)

REFERENCES

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYLVANIA 15213

Current address: 411 South Graham Street, Pittsburgh, Pennsylvania 15232