CLASS NUMBERS AND μ-INVARIANTS OF CYCLOTOMIC FIELDS

T. METSÄNKYLÄ

Abstract. We give a new upper bound for the μ-invariant of a cyclotomic field by estimating the first factor of the class number of the \mathfrak{p}th cyclotomic field (\mathfrak{p} an odd prime).

For each $n \geq 0$ let h_n denote the class number of the cyclotomic field of p^{n+1}th roots of unity, where p is an odd prime. According to Iwasawa [1], the greatest exponent $e(n)$ for which $p^{e(n)} | h_n$ is given by a formula

$$e(n) = \lambda n + \mu p^n + v,$$

valid for all sufficiently large n. Here λ, μ, and v are integers ($\lambda, \mu \geq 0$) independent of n. In [2] Iwasawa proved the following estimates for μ:

(i) $\mu < p - 1$ for all p,

(ii) if $c > \frac{1}{3}$, then there exists a bound $N(c)$ such that $\mu < c(p-1)$ whenever $p > N(c)$.

We shall show that $\mu < (p-1)/2$ for all p.

Let us denote by $h^ -$ the so-called first factor of h_0. As shown in [2], the problem of estimating μ can be reduced to that of estimating $h^ -$ by means of the relation $p^{\mu/2} \leq h^-$. It is known that

$$h^- = (2p)^{-p-3/2} \left| \prod_{\chi \in S} \sum_{n=1}^{p-1} \chi(n)n \right|,$$

where S denotes the set of all odd residue class characters mod p. Noting that

$$\sum_{\chi \in S} \chi(m)\chi'(n) = \begin{cases} (p - 1)/2 & \text{if } m \equiv n \text{ (mod } p), (mn, p) = 1, \\ -(p - 1)/2 & \text{if } m \equiv -n \text{ (mod } p), (mn, p) = 1, \\ 0 & \text{otherwise}, \end{cases}$$

Received by the editors August 17, 1973.

Key words and phrases. Class number, cyclotomic field.

© American Mathematical Society 1974

299
$(\chi'$ means the complex conjugate of χ), we first get
\[
\sum_{\chi \in S} \left| \sum_{n=1}^{p-1} \chi(n)n \right|^2 = ((p - 1)/2) \left(\sum_{n=1}^{p-1} n^2 - \sum_{n=1}^{p-1} n(p - n) \right) = (p - 2)(p - 1)^2 p/12.
\]

Therefore, by the arithmetic-geometric mean inequality,
\[
\prod_{\chi \in S} \left| \sum_{n=1}^{p-1} \chi(n)n \right|^{4/(p-1)} \leq (p - 2)(p - 1)p/6 < p^3/6.
\]

This gives us the estimate

\[h^- < 2p(p/24)^{(p-1)/4} \]

Thus, if $p>3$, we see that $h^- < p^{(p-1)/4}$ and so $\mu < (p-1)/2$. This holds also for $p=3$, since then $h^- = 1$. (As a matter of fact, we know that $\mu = 0$ for all regular primes.)

It should be mentioned that the result (1) has been obtained earlier by Lepistö [3] and the author [4] by more complicated methods than that presented above.

References

Department of Mathematics, University of Turku, SF-20500 Turku, Finland