Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Class numbers and $ \mu $-invariants of cyclotomic fields


Author: T. Metsänkylä
Journal: Proc. Amer. Math. Soc. 43 (1974), 299-300
MSC: Primary 12A50; Secondary 12A35
DOI: https://doi.org/10.1090/S0002-9939-1974-0332721-8
MathSciNet review: 0332721
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new upper bound for the $ \mu $-invariant of a cyclotomic field by estimating the first factor of the class number of the $ p$th cyclotomic field ($ p$ an odd prime).


References [Enhancements On Off] (What's this?)

  • [1] K. Iwasawa, On $ \Gamma $-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226. MR 23 #A1630. MR 0124316 (23:A1630)
  • [2] -, On the $ \mu $-invariants of cyclotomic fields, Acta Arith. 21 (1972), 99-101. MR 0302606 (46:1750)
  • [3] T. Lepistö, On the class number of the cyclotomic field $ k(\exp (2\pi i/{p^h}))$, Ann. Univ. Turku. Ser. A I 125 (1969), 13 pp.
  • [4] T. Metsänkylä, On the growth of the first factor of the cyclotomic class number, Ann. Univ. Turku. Ser. A I 155 (1972), 12 pp. MR 0330103 (48:8441)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12A50, 12A35

Retrieve articles in all journals with MSC: 12A50, 12A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0332721-8
Keywords: Class number, cyclotomic field
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society