SOME PHENOMENA IN HOMOTOPICAL ALGEBRA

K. VARADARAJAN

Abstract. In [6] D. G. Quillen developed homotopy theory in categories satisfying certain axioms. He showed that many results in classical homotopy theory (of topological spaces) go through in his axiomatic set-up. The duality observed by Eckmann-Hilton in classical homotopy theory is reflected in the axioms of a model category. In [7] we developed the theory of numerical invariants like the Lusternik-Schnirelmann category and cocategory etc. for such model categories and in [8] we dealt with applications of this theory to injective and projective homotopy theory of modules as developed by Hilton [2], [3, Chapter 13].

Contrary to the general expectations there are many aspects of classical homotopy theory which cannot be carried over to Quillen's axiomatic set-up. This paper deals with some of these phenomena.

Introduction. For any topological group \(G \) it is well known [1], [5], that there exists a principal fibre space \(E_G \to \pi_0 B_G \) with group \(G \) and total space \(E_G \) contractible. This suggests the following question. Suppose \(M \) is a group object in a model category \(\mathcal{C} \) in the sense of Quillen [6]. Does there exist a fibration \(E \to \pi B \) in \(\mathcal{C} \) with the property that \(E \) is contractible (i.e. to say \(\pi(Q(E), Q(E)) = 0 \) following the notation of Quillen [6]) with fibre of \(p \) isomorphic to \(M \)? We will give examples to show that, in general, this is false. Also we will illustrate that, given a cogroup object \(H \) in a model category \(\mathcal{C} \), there need not exist a cofibration \(A \to q E \) in \(\mathcal{C} \) with \(E \) contractible and cofibre of \(q \) isomorphic to \(H \).

Actually it will turn out that the two model categories \(\mathcal{C} \) and \(\mathcal{T} \) that we mention in this connection (§1) will have the following additional properties.

(i) All the objects are simultaneously group objects and cogroup objects.

(ii) For every object \(A \) both \(\Sigma A \) and \(\Omega A \) are contractible.

It can easily be shown that in the category \(\mathcal{T} \) of topological spaces if \(G \) is a group object with \(\Sigma G \) contractible then \(G \) itself is contractible.

In §2 we characterise all CW-complexes \(X \) with the property that \(\Sigma X \) is contractible. They turn out to be "Moore CW-complexes" \(M(\pi, 1) \)

Received by the editors June 25, 1973.

Key words and phrases. Category, cocategory, \(p \)-homotopy, \(i \)-homotopy, Moore spaces.

© American Mathematical Society 1974

272
for groups \(\pi \) satisfying \(H_1(\pi) = 0 = H_2(\pi) \). On the other hand, if \(X \) is a 0-connected CW-complex with \(\Omega X \) contractible, then \(X \) itself is contractible.

1. The model categories \(\mathcal{C} \) and \(\mathcal{F} \). Let \(\mathcal{C} \) denote the category of all modules over a Dedekind domain \(A \). Defining cofibrations, weak equivalences and fibrations to be respectively monomorphisms, \(i \)-homotopy equivalences in the sense of Hilton [2] and maps satisfying the lifting property (L.P.) below, the author showed in [8] that \(\mathcal{C} \) is a model category satisfying the axioms \(M_0 \) to \(M_5 \) of Quillen [6].

(L.P.) A map \(p: E \rightarrow B \) in \(\mathcal{C} \) satisfies (L.P.) if given any \(f: J \rightarrow B \) with \(J \) injective there exists a lift \(g: J \rightarrow E \) of \(f \) (i.e. \(pg = f \)).

Let \(\mathcal{F} \) be the category of finitely generated modules over a Principal Ideal Domain (PID). Defining fibrations, weak equivalences and cofibrations to be respectively epimorphisms, \(p \)-homotopy equivalences in the sense of Hilton [2] and maps satisfying the extension property (E.P.) mentioned below it was shown in [8] that \(\mathcal{F} \) is a model category in the sense of Quillen.

(E.P.) A map \(q: A \rightarrow E \) is said to have the (E.P.) if given any finitely generated free \(A \)-module \(F \) and any map \(\alpha: A \rightarrow F \) there exists a map \(\beta: E \rightarrow F \) satisfying \(\beta q = \alpha \).

It is clear that for any \(M \) in \(\mathcal{C} \) (resp. \(\mathcal{F} \)) \(M \times M \rightarrow M, M \rightarrow M \) defined by \(\mu(x, y) = x + y, \sigma(x) = -x \) make \(M \) into a group object in \(\mathcal{C} \) (resp. \(\mathcal{F} \)) with \(\mu \) as the multiplication, \(\sigma \) as the inversion and \(0: M \rightarrow M \) as the unit. Similarly, \(M \rightarrow M \oplus M \) given by \(\nu(x) = (x, x) \) makes \(M \) into a cogroup object in \(\mathcal{C} \) (resp. \(\mathcal{F} \)) with \(\sigma \) as the inversion and \(M \rightarrow 0 \) as the co-unit. The following were proved in [8].

(1) In \(\mathcal{C} \) as well as \(\mathcal{F} \) all the objects are fibrant and cofibrant.

(2) An object \(M \) of \(\mathcal{C} \) (resp. \(\mathcal{F} \)) is contractible if and only if \(M \) is injective (respectively free).

(3) For any \(M \) in \(\mathcal{C} \) as well as \(\mathcal{F} \) both \(\Sigma M \) and \(\Omega M \) are contractible.

(4) For \(M \) in \(\mathcal{C} \) or \(\mathcal{F} \)

(a) \(\text{Ind Cat } M = 0 = \text{Cocat } M \) if and only if \(M \) is contractible.

(b) \(\text{Ind Cat } M = \infty = \text{Cocat } M \) whenever \(M \) is not contractible.

Proposition 1.1. Let \(M \in \mathcal{C} \) (resp. \(\mathcal{F} \)).

(i) If there exists a fibration \(p: E \rightarrow \mathcal{p}B \) with \(E \) contractible and fibre of \(p \) isomorphic to \(M \), then \(M \) itself is contractible.

(ii) If there exists a cofibration \(q: A \rightarrow E \) with \(E \) contractible and cofibre of \(q \) isomorphic to \(M \), then \(M \) itself is contractible.

Proof. If there exists a fibration \(E \rightarrow \mathcal{p}B \) with \(E \) contractible and fibre of \(p \) isomorphic to \(M \) then, from the definition of Cocat \(M \), we see...
that $\text{Cocat } M \leq 1$. Then 4(b) implies M is contractible. This proves (i). The proof of (ii) is exactly dual and hence omitted.

2. Contractibility of ΣX. We now consider the category \mathcal{F}_\ast of pointed topological spaces. Unless otherwise mentioned the homology groups we consider are the singular homology groups.

Proposition 2.1. Let X be a topological space which is of the homotopy type of ΩY for some Y. Then ΣX is contractible if and only if X itself is contractible.

Proof. When X is contractible clearly ΣX also is. Assume ΣX contractible. Let $f : X \to \Omega Y$ be a homotopy equivalence. Then

$$[X, X] \overset{f_*}{\to} [X, \Omega Y] \cong [\Sigma X, Y] = 0$$

since ΣX is contractible. Thus $[X, X] = 0$, and X is contractible.

Corollary 2.2. Let G be a topological group. Then SG is contractible if and only if G itself is.

Proof. It is known that G is of the homotopy type of ΩB_G where B_G is a classifying space for G.

Remark 2.3. When G is a group object in \mathcal{F}_\ast the above corollary asserts that ΣG is contractible if and only if G itself is. Consider the model categories \mathcal{C} and \mathcal{F} introduced in §1. All the objects in \mathcal{C} (or \mathcal{F}) are group objects; for any object M both ΣM and ΩM are contractible. By taking the base ring Λ to be the ring Z of integers we see immediately that not all M in \mathcal{C} (resp. \mathcal{F}) are contractible.

Definition 2.4. Given any group π not necessarily abelian we call a space X a "Moore space" of type $(\pi, 1)$; if X is arcwise connected, $\pi_1(X) \cong \pi$ and $H_j(X) = 0$ for $j \geq 2$.

This definition differs from the one given in [9] in only one respect. We allow π to be nonabelian. We denote a Moore space of type $(\pi, 1)$ by $M(\pi, 1)$. Let $H_i(\pi)$ denote the ith homology group of the group π with coefficients in Z (with trivial π-operators). The following is proved in [9].

Proposition 2.5. A Moore space $M(\pi, 1)$ exists if and only if $H_2(\pi) = 0$.

The proof given in [9] is valid even if π is not abelian. When $H_2(\pi) = 0$ the construction in [9] actually gives an $M(\pi, 1)$ CW-complex.

Proposition 2.6. Let X be a CW-complex. Then ΣX is contractible if and only if X is an $M(\pi, 1)$ complex with $H_1(\pi) = 0 = H_2(\pi)$.

Proof. Assume ΣX contractible. If α is the cardinality of the set of arc components of X then $H_1(\Sigma X)$ is free abelian of rank $\alpha - 1$. Since
$H_1(\Sigma X) = 0$ we see that $\alpha = 1$. Thus X is 0-connected. Let π denote $\pi_1(X)$. Then from $0 = H_{j+1}(\Sigma X) \simeq H_j(X)$ for $j \geq 1$ we see that $H_1(X) \simeq \pi/\{1\} \simeq H_1(\pi) = 0$ and $H_j(X) = 0$ for $j \geq 2$. Hence, X is an $M(\pi, 1)$ complex with $H_1(\pi) = 0$. From Proposition 2.5 we get $H_2(\pi) = 0$.

Conversely, assume X is an $M(\pi, 1)$ CW-complex with $H_1(\pi) = 0$. ΣX is simply connected (Van Kampen theorem). From $H_{j+1}(\Sigma X) = H_j(X)$ for $j \geq 1$, $H_j(X) = 0$ for $j \geq 2$ and $H_1(X) \simeq \pi/\{1\} \simeq H_1(\pi) = 0$ we immediately see that $H_i(\Sigma X) = 0$ for all $i \geq 1$. By J. H. C. Whitehead ΣX is contractible.

Remark 2.7. Finitely presentable groups π satisfying $H_1(\pi) = 0 = H_2(\pi)$ are known to be the groups which occur as the fundamental groups of smooth homology n-spheres ($n \geq 5$) [4]. There are many such nontrivial groups.

Thus there are noncontractible CW-complexes X with ΣX contractible.

3. Contractibility of ΩX.

Lemma 3.1. Suppose X is of the homotopy type of a 0-connected CW-complex. Then ΩX is contractible if and only if X is.

This is an immediate consequence of the relation $\pi_i(\Omega X) \simeq \pi_{i+1}(X)$ for $i \geq 0$ and J. H. C. Whitehead’s theorem.

Example 3.2. Let A_1, A_2, A_3, A_4 be the subsets of the plane \mathbb{R}^2 given by

$A_1 = \{(x, \sin x^{-1}) \mid 0 < x \leq \frac{1}{\pi-1}\}$,

$A_2 = \{(\frac{1}{\pi-1}, y) \mid -2 \leq y \leq 0\}$,

$A_3 = \{(x, -2) \mid 0 \leq x \leq \frac{1}{\pi-1}\}$,

$A_4 = \{(0, y) \mid -2 \leq y \leq 1\}$.

Let $X = A_1 \cup A_2 \cup A_3 \cup A_4$. Let $x_0 = (0, 1)$ be chosen as the base point in X. It is known that the space $\Omega(X, x_0)$ is contractible. However X is not contractible. In fact, the Čech homology $\tilde{H}_1(X) \simeq \mathbb{Z}$; whereas the singular homology group $H_1(X) = 0$. Hence, X is not even of the homotopy type of a CW-complex.

Remark 3.3. Suppose X is a 0-connected noncontractible space with $\Omega(X)$ contractible. From Lemma 3.1 we immediately get that such an X will not be of the homotopy type of a CW-complex.

Remark 3.4. Let X be the space $A_1 \cup A_2 \cup A_3 \cup A_4$ given in Example 3.2. Using the fact that Čech cohomology theory satisfies the axioms of Eilenberg-Steenrod we get, in the usual way as a consequence of the exactness homotopy and excision axioms, $\tilde{H}^{i+1}(\Sigma X) \simeq \tilde{H}^i(X)$ for $i \geq 1$. In particular, $\tilde{H}^2(\Sigma X) \simeq \tilde{H}^1(X) \simeq \mathbb{Z}$. Hence, ΣX is not contractible. The same argument (repeated) yields that none of the spaces $\Sigma^l X$ ($l \geq 1$) is contractible.

It might be interesting to find an example of a topological space X such that both ΣX and ΩX are contractible but X itself is not.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, CANADA