Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy groups of the isotropy groups of annulus


Author: Jong P. Lee
Journal: Proc. Amer. Math. Soc. 44 (1974), 213-217
MSC: Primary 57E05; Secondary 55E05
DOI: https://doi.org/10.1090/S0002-9939-1974-0328965-1
MathSciNet review: 0328965
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the isotopy groups of various subspaces of the isotropy group at an interior point of an annulus. We also prove that if $ a$ and $ x$ are interior points of a disk $ D$, then $ {\pi _0}[H(D - a,x)] = {Z_2}$ and $ {\pi _n}[H(D - a,x)] = 0$ for $ n \geqq 1$ where $ H(D - a,x)$ is the isotropy group at $ x$.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, On the deformation of an $ n$-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
  • [2] D. B. A. Epstein, Curves on $ 2$-manifolds and isotopies, Acta Math. 115 (1966), 83-107. MR 35 #4938. MR 0214087 (35:4938)
  • [3] H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333. MR 26 #4327. MR 0146807 (26:4327)
  • [4] M. E. Hamstrom and E. Dyer, Regular mappings and the space of homeomorphisms on a $ 2$-manifold, Duke Math. J. 25 (1958), 521-531. MR 20 #2695. MR 0096202 (20:2695)
  • [5] G. S. McCarty, Jr., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1962), 293-304. MR 26 #3062. MR 0145531 (26:3062)
  • [6] L. V. Quintas, Solved and unsolved problems in the computation of homeotopy groups of $ 2$-manifolds, Trans. New York Acad. Sci. 30 (1968), 919-938.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57E05, 55E05

Retrieve articles in all journals with MSC: 57E05, 55E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0328965-1
Keywords: Homeomorphism, homotopy group, isotopy group, isotropy group, winding number, homeotopy exact sequence
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society