Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relative size of the Shilov boundary of a function algebra


Author: William R. Zame
Journal: Proc. Amer. Math. Soc. 44 (1974), 68-70
MSC: Primary 46J10; Secondary 32E25
DOI: https://doi.org/10.1090/S0002-9939-1974-0333741-X
MathSciNet review: 0333741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A notion of size for subsets of the spectrum of a function algebra is described, relative to which each open subset of the Shilov boundary has the same size as the spectrum.


References [Enhancements On Off] (What's this?)

  • [1] I. Glicksberg, Maximal algebras and a theorem of Radó, Pacific J. Math. 14 (1964), 919-941. MR 29 #6337. MR 0169082 (29:6337)
  • [2] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [3] A. Huckleberry and W. Stoll, On the thickness of the Shilov boundary, Math. Ann. (to appear). MR 0338445 (49:3210)
  • [4] C. E. Rickart, Analytic phenomena in general function algebras, Pacific J. Math. 18 (1966), 361-377. MR 33 6438. MR 0198279 (33:6438)
  • [5] -, The maximal ideal space of functions locally approximable in a function algebra, Proc. Amer. Math. Soc. 17 (1966), 1320-1326. MR 34 #1876. MR 0201999 (34:1876)
  • [6] -, Holomorphic convexity for general function algebras, Canad. J. Math. 20 (1968), 272-290. MR 37 #3362. MR 0227778 (37:3362)
  • [7] H. Rossi, The local maximum modulus principle, Ann. of Math. (2) 72 (1960), 1-11. MR 22 #8317. MR 0117539 (22:8317)
  • [8] E. L. Stout, The theory of uniform algebras, Bogden and Quigley, 1971. MR 0423083 (54:11066)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10, 32E25

Retrieve articles in all journals with MSC: 46J10, 32E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0333741-X
Keywords: Spectrum, Shilov boundary, $ A$-holomorphic function, thin sets
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society