Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Clifford translations of symmetric spaces


Author: V. Ozols
Journal: Proc. Amer. Math. Soc. 44 (1974), 169-175
MSC: Primary 53C35
DOI: https://doi.org/10.1090/S0002-9939-1974-0334093-1
MathSciNet review: 0334093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A direct proof, not using the classification of symmetric spaces, is given for the following characterization of Clifford translations in a symmetric space $ M$: An isometry $ g$ is a Clifford translation of $ M$ if and only if the centralizer $ Z(g)$ of $ g$ in the isometry group of $ M$ is transitive on $ M$. The proof uses a geodesic characterization of Clifford translations, and the subgroups $ {T^{(h)}}$ of J. de Siebenthal.


References [Enhancements On Off] (What's this?)

  • [1] H. Freudenthal, Clifford-Wolf-Isometrien symmetrischer Räume, Math. Ann. 150 (1963), 136-149. MR 27 #693. MR 0150701 (27:693)
  • [2] V. Ozols, Critical points of the displacement function of an isometry, J. Differential Geometry 3 (1969), 411-432. MR 42 #1010. MR 0266101 (42:1010)
  • [3] G. Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113-128. MR 42 #1529. MR 0248277 (40:1529)
  • [4] J. de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956), 41-89. MR 20 #926. MR 0094408 (20:926)
  • [5] G. Vincent, Les groupes linéaires finis sans points fixes, Comment. Math. Helv. 20 (1947), 117-171. MR 9, 131. MR 0021936 (9:131d)
  • [6] J. A. Wolf, Vincent's conjecture on Clifford translations of the sphere, Comment. Math. Helv. 36 (1961), 33-41. MR 25 #532. MR 0137076 (25:532)
  • [7] -, Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962/63), 65-101. MR 26 #5522. MR 0148012 (26:5522)
  • [8] -, Spaces of constant curvature, 2nd ed., 1972.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C35

Retrieve articles in all journals with MSC: 53C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0334093-1
Keywords: Clifford translation, isometry, symmetric space, homogeneous space
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society