ON DIRICHLET’S THEOREM AND INFINITE PRIMES

CARTER WAID

ABSTRACT. It is shown that Dirichlet’s theorem on primes in an arithmetic progression is equivalent to the statement that every unit of a certain quotient ring \mathbb{Z} of the nonstandard integers is the image of an infinite prime. The ring \mathbb{Z} is the completion of \mathbb{Z} relative to the “natural” topology on \mathbb{Z}.

1. Notation. Throughout this note N shall denote the natural numbers, \mathbb{Z} the rational integers, and P the positive primes. We shall follow the approach of Machover and Hirschfeld, [2], in our use of nonstandard analysis. Thus U is to be a universal set containing N and *U will be a comprehensive [6, p. 446] enlargement of U. The nonstandard natural numbers *N can be expressed as $^*N=N\cup N_\infty$ where N_∞ is the set of infinite natural numbers. Similarly, $^*P=P\cup P_\infty$, P_∞ the set of infinite primes.

2. Lemma. Let a, b be coprime integers. A necessary and sufficient condition that the sequence $|a+bn|$ $(n \in N)$ contains infinitely many primes is that $|a+bn|$ be an infinite prime for some nonstandard natural number n.

PROOF. Clear.

3. Completions of \mathbb{Z}. In a series of papers [4], [5], [6], Robinson derives the results of this section in a more general setting.

Let $\mu=\bigcap n \cdot ^*\mathbb{Z}$ $(n \in N)$. The external ideal μ of $^*\mathbb{Z}$ is the monad of 0 for the “natural” topology on \mathbb{Z}. It can be characterized both as the set of all nonstandard integers divisible by every nonzero standard integer and as the $^*\mathbb{Z}$-ideal generated by numbers of the form $n!$ where n is an infinite natural number. Clearly $\mathbb{Z} \cap \mu=0$ so that \mathbb{Z} imbeds naturally in $^*\mathbb{Z}$. By results of Robinson [3, p. 109] on completions of metric spaces, \mathbb{Z} is the completion of \mathbb{Z} with respect to the “natural” topology and hence is the ring of ν-adic integers [1]. Similarly, let p be a standard prime and set $\mu_p=\bigcap p^n \cdot ^*\mathbb{Z}$ $(n \in N)$. Then μ_p is the monad of 0 for the usual p-adic

Received by the editors June 1, 1973.

Key words and phrases. Dirichlet’s theorem, nonstandard arithmetic, infinite primes, units, completions.

© American Mathematical Society 1974

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
topology on \mathbb{Z} and can be characterized as either the set of nonstandard integers divisible by every finite power of p or as the $\ast\mathbb{Z}$-ideal generated by numbers of the form p^n, n an infinite natural number. Thus $\mathbb{Z}_p = \ast\mathbb{Z}/\mu_p$ is the ring of p-adic integers. It is not difficult to show that $\mu = \bigcap \mu_p$ ($p \in \mathbb{P}$), and then using the fact that $\ast\mathbb{U}$ is comprehensive, that $\mathbb{Z} \simeq \prod \mathbb{Z}_p$ ($p \in \mathbb{P}$).

4. The units of \mathbb{Z}. Robinson [5, p. 770] notes that the units of \mathbb{Z} are the residue classes of nonstandard integers which have no standard prime factors. Using Dirichlet’s theorem we can sharpen this result and perhaps shed some light on infinite primes. If $x \in \ast\mathbb{Z}$ we shall let \tilde{x} denote its residue class in \mathbb{Z}.

Theorem. The units of \mathbb{Z} are precisely the residue classes \tilde{p} where p ranges over the infinite primes.

Proof. If $p \in \mathbb{P}_\infty$ there is an infinite natural number $n < p$, and hence $n!$ and p are prime. Thus $\mu + p \cdot \ast\mathbb{Z} = \ast\mathbb{Z}$ and \tilde{p} is a unit of \mathbb{Z}.

Conversely, if \tilde{a} is a unit of \mathbb{Z}, $a \cdot \ast\mathbb{Z} + \mu = \ast\mathbb{Z}$, hence a and b are co-prime for some nonzero $b \in \mu$. We may assume a and b are positive and, using Dirichlet’s theorem, conclude that $a + bn = p$ is prime for some $n \in \ast\mathbb{N}$. Since b is infinite, so is p, and clearly $\tilde{a} = \tilde{p}$.

This theorem has an interesting converse which points to a possible nonstandard “elementary” proof of Dirichlet’s theorem.

Theorem. Assume that the units of \mathbb{Z} are the residues of infinite primes. Then Dirichlet’s theorem holds.

Proof. Let a and b be standard coprime integers and consider the sequence $\{a+bn\}$ ($n \in \mathbb{N}$). If k is any standard natural number, there is an $n \in \mathbb{N}$ such that $a + bn$ is relatively prime to k! (choose n to be the largest factor of k! that is prime to a). Consequently, if k is an infinite natural number, there is an $n \in \ast\mathbb{N}$ such that $a + bn$ and k! are relatively prime. Then $a + bn$ has no standard prime factor and so (see remark at beginning of this section) $(a+bn)^{-1}$ is a unit in \mathbb{Z}.

We consider two cases:

(i) If $b > 0$, $(a+bn)^{-1}$ is a unit in \mathbb{Z} and, by our assumption, $a + bn = p + d$ for some infinite prime p and $d \in \mu$. Since b is standard it divides d, and setting $d = bD$ we see that $a + b(n - D) = p$. Since p is positive infinite, $n - D$ must be positive infinite.

(ii) If $b < 0$, $(-a - bn)^{-1}$ is a unit in \mathbb{Z} and by an argument similar to the one above, $-a - b(n + D) = p$ where again $n + D \in \ast\mathbb{N}$. In either case we have $|a + bk| = p$ for some $k \in \ast\mathbb{N}$. Dirichlet’s theorem follows from the Lemma.
BIBLIOGRAPHY

