Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A two-dimensional non-Noetherian factorial ring


Author: Robert Gilmer
Journal: Proc. Amer. Math. Soc. 44 (1974), 25-30
MSC: Primary 13F15
DOI: https://doi.org/10.1090/S0002-9939-1974-0335500-0
MathSciNet review: 0335500
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative ring with identity and let $ G$ be an abelian group of torsion-free rank $ \alpha $. If $ \{ {X_\lambda }\} $ is a set of indeterminates over $ R$ of cardinality $ \alpha $, then the group ring of $ G$ over $ R$ and the polynomial ring $ R[\{ {X_\lambda }\} ]$ have the same (Krull) dimension. The preceding result and a theorem due to T. Parker and the author imply that for each integer $ k \geqq 2$, there is a $ k$-dimensional non-Noetherian unique factorization domain of arbitrary characteristic.


References [Enhancements On Off] (What's this?)

  • [1] J. T. Arnold and R. Gilmer, The dimension sequence of a commutative ring, Bull. Amer. Math. Soc. 79 (1973), 407-409. MR 0313244 (47:1799)
  • [2] -, The dimension sequence of a commutative ring, Amer. J. Math. (to appear). MR 0364221 (51:476)
  • [3] Ian G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685. MR 27 #3666. MR 0153705 (27:3666)
  • [4] John E. David, Some non-Noetherian factorial rings, Dissertation, University of Rochester, Rochester, N.Y., 1972.
  • [5] -, A non-Noetherian factorial ring, Trans. Amer. Math. Soc. 169 (1972), 495-502. MR 0308114 (46:7229)
  • [6] L. Fuchs, Abelian groups, Pergamon Press, London, 1967. MR 0111783 (22:2644)
  • [7] -, Infinite abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970; Vol. II, Academic Press, New York, 1973. MR 41 #333. MR 0255673 (41:333)
  • [8] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 38 #1144. MR 0232821 (38:1144)
  • [9] R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972. MR 0427289 (55:323)
  • [10] R. Gilmer and T. Parker, Divisibility properties of semigroup rings, Michigan Math. J. (to appear). MR 0342635 (49:7381)
  • [11] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. No. 133 (1973). MR 0352177 (50:4664)
  • [12] N. Jacobson, Lectures in abstract algebra, Vol. I, Basic concepts, Van Nostrand, Princeton, N.J., 1951. MR 12, 794. MR 0041102 (12:794c)
  • [13] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [14] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [15] D. G. Northcott, Lessons on rings, modules, and multiplicities, Cambridge Univ. Press, London, 1968. MR 38 #144. MR 0231816 (38:144)
  • [16] L. Pontryagin, The theory of topological commutative groups, Ann. of Math. 35 (1934), 361-388. MR 1503168
  • [17] R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés, C.R. Acad. Sci. Paris, Sér. A-B 265 (1967), A712-A715. MR 37 #243. MR 0224644 (37:243)
  • [18] J. Rotman, The theory of groups: An introduction, Allyn and Bacon, Boston, Mass., 1965. MR 34 #4338. MR 0204499 (34:4338)
  • [19] P. F. Smith, On the dimension of group rings, Proc. London Math. Soc. (3) 25 (1972), 288-302. MR 0314952 (47:3501)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F15

Retrieve articles in all journals with MSC: 13F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0335500-0
Keywords: Unique factorization domain, group ring, Noetherian ring
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society