Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fourier transforms and measure-preserving transformations


Author: O. Carruth McGehee
Journal: Proc. Amer. Math. Soc. 44 (1974), 71-77
MSC: Primary 42A68
DOI: https://doi.org/10.1090/S0002-9939-1974-0338678-8
MathSciNet review: 0338678
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a continuous function $ f$ on the real line, vanishing at infinity, such that, for every measure-preserving transformation $ h$, the composition $ f \circ h$ fails to be a Fourier transform. This fact is a consequence of a theorem about measurable functions which is obtained from the theory of idempotents.


References [Enhancements On Off] (What's this?)

  • [1] N. Bari, A treatise on trigonometric series. Vols. I, II, Macmillan, New York, 1964. MR 30 #1347. MR 0171116 (30:1347)
  • [2] -, Trigonometric series, Fizmatgiz, Moscow, 1961. MR 23 #A3411.
  • [3] H. Davenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97. MR 23 #A1992. MR 0124681 (23:A1992)
  • [4] J.-P. Kahane, Sur les réarrangements des suites de coefficients de Fourier-Lebesgue, C.R. Acad. Sci. Paris Sér. A-B 265 (1967), A310-A312. MR 37 #4494. MR 0228915 (37:4494)
  • [5] -, Sur les réarrangements de fonctions de la classe $ A$, Studia Math. 31 (1968), 287-293. MR 39 #6007. MR 0244693 (39:6007)
  • [6] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Math. und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 43 #801. MR 0275043 (43:801)
  • [7] -, Brownian motion and harmonic analysis, Notes on lectures given at the University of Warwick in 1968.
  • [8] O. C. McGehee, Helson sets in $ {T^n}$, Lecture Notes in Math., no. 266, Springer-Verlag, Berlin and New York, 1971, pp. 229-237. MR 0394056 (52:14862)
  • [9] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808. MR 0152834 (27:2808)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A68

Retrieve articles in all journals with MSC: 42A68


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0338678-8
Keywords: Fourier transforms, idempotents, measure-preserving transformations
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society