CONVEX MATRIX FUNCTIONS
WILLIAM WATKINS

Abstract. The purpose of this paper is to prove convexity properties for the tensor product, determinant, and permanent of hermitian matrices.

Let C^n be the vector space of all complex n-tuples with the usual inner product $\langle \ , \ \rangle$ and let H_n be the set of all n by n hermitian matrices. A matrix A in H_n is nonnegative if $\langle Ax, x \rangle \geq 0$ for all x in C^n. If A and B are in H_n, we write $A \geq B$ if $A - B$ is nonnegative. A function f from H_n to H_m is monotone if $A \geq B$ implies $f(A) \geq f(B)$, and convex if $f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B)$, for all $0 \leq \lambda \leq 1$.

Löwner [6] introduced the case where f is induced by a real valued function and $m = n$. Other authors [2], [4], [5] have analysed this case further.

Example [9]. The inverse function is convex on the set of all invertible, nonnegative matrices in H_n.

Example [4]. The square root function is monotone on the set of all nonnegative matrices in H_n.

Some work has been done on the case where $m = 1$. That is, f is a function from H_n to the real numbers. For example, Marcus and Nikolai [8] have shown that each member of a class of generalized matrix functions is monotone. This class of functions contains the determinant and permanent. For other results of this type see [1].

In order to state the convexity property for the tensor product, let m_1, \cdots, m_r be r positive integers. It is well known [10, p. 268] that, for x_i, y_i in C^{m_i}, $i = 1, \cdots, r$, the decomposable tensors $x_1 \otimes \cdots \otimes x_r$ and $y_1 \otimes \cdots \otimes y_r$ in C^N, $N = m_1 \cdots m_r$, satisfy

$\langle x_1 \otimes \cdots \otimes x_r, y_1 \otimes \cdots \otimes y_r \rangle = \langle x_1, y_1 \rangle \cdots \langle x_r, y_r \rangle$.

If A_i is an m_i by m_i matrix $(i = 1, \cdots, r)$, then the tensor product $\otimes^r A_i$ is an N by N matrix satisfying

$\otimes^r A_i(x_1 \otimes \cdots \otimes x_r) = A_1 x_1 \otimes \cdots \otimes A_r x_r$,

for x_i in C^{m_i} $(i = 1, \cdots, r)$.

Received by the editors June 15, 1973.

Theorem 1. If A_i and B_i are matrices in H_{m_i} with $0 \leq B_i \leq A_i$, $i = 1, \cdots, r$, and $0 \leq \lambda \leq 1$, then
\[
\otimes^r (\lambda A_i + (1 - \lambda)B_i) \leq \lambda \otimes^r A_i + (1 - \lambda) \otimes^r B_i.
\]

Definition (Generalized matrix function). Let S_n denote the permutation group on n letters and let G be a subgroup of S_n with irreducible character $\chi: G \to \mathbb{C}$. For each n by n complex matrix $A = (a_{ij})$, define
\[
d(A) = \sum_{\sigma} \chi(\sigma) \prod_{i=1}^{n} a_{\sigma i, i} \text{ (sum } \sigma \text{ in } G).
\]

The function d depends on both the subgroup G and its character χ. If $G = S_n$ and $\chi(\sigma)$ is the sign of σ, then d is the determinant function. If $G = S_n$ and $\chi \equiv 1$, then d is the permanent function. For a fuller explanation see [7].

Theorem 2. If A and B are matrices in H_n with $0 \leq B \leq A$ and $0 \leq \lambda \leq 1$, then
\[
d(\lambda A + (1 - \lambda)B) \leq \lambda d(A) + (1 - \lambda)d(B).
\]

Corollary. If A and B are matrices in H_n with $0 \leq B \leq A$ and $0 \leq \lambda \leq 1$, then
\[
det(\lambda A + (1 - \lambda)B) \leq \lambda \det A + (1 - \lambda)\det B
\]
and
\[
\text{per}(\lambda A + (1 - \lambda)B) \leq \lambda \text{ per } A + (1 - \lambda)\text{ per } B.
\]

Proofs.
Proof of Theorem 1. It is shown in [8] that if A_1, B_1 are in H_{m_1} and A_2, B_2 are in H_{m_2} with $0 \leq B_1 \leq A_1$ and $0 \leq B_2 \leq A_2$, then $A_1 \otimes A_2 \geq B_1 \otimes B_2$. Thus the right side of the identity
\[
\lambda(A_1 \otimes A_2) + (1 - \lambda)(B_1 \otimes B_2) - (\lambda A_1 + (1 - \lambda)B_1) \otimes (\lambda A_2 + (1 - \lambda)B_2)
\]
is nonnegative. Theorem 1 follows by induction.

In order to prove Theorem 2, we develop ideas relating the tensor product to the generalized matrix function d.

For each σ in S_n, define an N by N ($N = n^n$) permutation matrix $P(\sigma)$ by $P(\sigma^{-1})x_1 \otimes \cdots \otimes x_n = x_{\sigma_1} \otimes \cdots \otimes x_{\sigma_n}$ for all x_i in \mathbb{C}^n. Notice that $P(\sigma \mu) = P(\sigma)P(\mu)$. Define an N by N matrix T by
\[
T = \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma) P(\sigma) \text{ (sum } \sigma \text{ in } G).
\]
It follows from the orthogonality relations for irreducible characters [3, p. 219] that T is an idempotent. The matrix T is hermitian since the complex conjugate of $\chi(\sigma)$ is $\chi(\sigma^{-1})$ and $P(\sigma)^* = P(\sigma^{-1})$. If $A = (a_{ij})$ is an $n \times n$ matrix, then $\otimes^n A$ commutes with each $P(\sigma)$ and so it commutes with T.

Let e_1, \ldots, e_n be the usual basis for \mathbb{C}^n. Then,

$$
(\otimes^n A)Te_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n) \\
= (T^*(\otimes^n A)Te_1 \otimes \cdots \otimes e_n, e_1 \otimes \cdots \otimes e_n) \\
= (T(\otimes^n A)e_1 \otimes \cdots \otimes e_n, e_1 \otimes \cdots \otimes e_n) \\
= (TAe_1 \otimes \cdots \otimes Ae_n, e_1 \otimes \cdots \otimes e_n) \\
= \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma)(Ae_{\sigma 1} \otimes \cdots \otimes Ae_{\sigma n}, e_1 \otimes \cdots \otimes e_n) \\
= \frac{\chi(1)}{|G|} \sum_{\sigma} \chi(\sigma) \prod_{i} (Ae_{\sigma i}, e_i) \\
= \frac{\chi(1)}{|G|} d(A).
$$

In the second inequality, notice that $T^*(\otimes^n A)T = T(\otimes^n A)$, since T and $\otimes^n A$ commute and T is a hermitian idempotent. If A and B are in H_n and $0 \leq A \leq B$ and $0 \leq \lambda \leq 1$, then by Theorem 1 we have

$$
\otimes^n (\lambda A + (1 - \lambda)B) \leq \lambda \otimes^n A + (1 - \lambda) \otimes^n B.
$$

By comparing inner products

$$
(\otimes^n (\lambda A + (1 - \lambda)B)Te_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n)
$$

and

$$
((\lambda \otimes^n A + (1 - \lambda) \otimes^n B)Te_1 \otimes \cdots \otimes e_n, Te_1 \otimes \cdots \otimes e_n),
$$

we get $d(\lambda A + (1 - \lambda)B) \leq \lambda d(A) + (1 - \lambda) d(B)$. The corollary consists of special cases.

References

5. F. Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), 18–42.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, NORTH RIDGE, CALIFORNIA 91324