A note on reductive operators

Author:
Frank Gilfeather

Journal:
Proc. Amer. Math. Soc. **44** (1974), 101-105

MSC:
Primary 47A15

DOI:
https://doi.org/10.1090/S0002-9939-1974-0341132-0

MathSciNet review:
0341132

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded linear operator on a Hilbert space is called *reductive* if every invariant subspace of reduces it. This paper gives examples of operators which give an affirmative answer to the reductive question: If is reductive, then is normal?

**[1]**T. Ando,*A note on invariant subspaces of a compact normal operator*, Arch. Math.**14**(1963), 337-340. MR**27**#4073. MR**0154115 (27:4073)****[2]**N. Aronszajn and K. T. Smith,*Invariant subspaces of completely continuous operators*, Ann. of Math, (2)**60**(1954), 345-350. MR**16**, 488. MR**0065807 (16:488b)****[3]**H. Behncke,*Structure of certain nonnormal operators*. II, Indiana Univ. Math. J.**22**(1972), 301-308. MR**0320788 (47:9322)****[4]**A. R. Bernstein and A. Robinson,*Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos*, Pacific J. Math.**16**(1966), 421-431. MR**33**#1724. MR**0193504 (33:1724)****[5]**N. Dunford and J. T. Schwartz,*Linear operators*. III, Wiley, Interscience, New York, 1971.**[6]**J. A. Dyer, E. A. Pedersen and P. Porcelli,*An equivalent formulation of the invariant subspace conjecture*, Bull. Amer. Math. Soc.**78**(1972), 1020-1024. MR**0306947 (46:6068)****[7]**F. Gilfeather,*On the Suzuki structure theory for non self-adjoint operators on Hilbert space*, Acta Sci. Math. (Szeged)**32**(1971), 239-249. MR**0305116 (46:4246)****[8]**-,*Operator valued roots of abelian analytic functions*, Pacific J. Math. (to appear). MR**0367691 (51:3933)****[9]**R. L. Moore,*Properties of reductive operators*, Notices Amer. Math. Soc.**20**(1973), A159.**[10]**E. A. Nordgren, H. Radjavi and P. Rosenthal,*Compact perturbations of normal operators with reducing invariant subspaces*, Notices Amer. Math. Soc.**20**(1973), A155; and Address #509, American Mathematical Society 79th Annual Meeting, January 26, 1973.**[11]**C. Pearcy and A. Shields,*A survey of some recent results on invariant subspaces of operators on Banach spaces*, Mimeographed notes, 1973.**[12]**P. Rosenthal,*Completely reducible operators*, Proc. Amer. Math. Soc.**19**(1968), 826-830. MR**0231234 (37:6789)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A15

Retrieve articles in all journals with MSC: 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0341132-0

Keywords:
Reductive operator,
invariant subspace

Article copyright:
© Copyright 1974
American Mathematical Society