PRODUCTS OF ARCWISE CONNECTED SPACES

B. LEHMAN

Abstract. It is proved that the arbitrary product of arcwise connected spaces is arcwise connected.

Introduction. By an arc we mean a Hausdorff continuum with at most 2 noncut points, called the end points of the arc. A space S is said to be arcwise connected if whenever $x, y \in S$, then x and y are the end points of some arc in S. It is well known (see, for instance, [4, Theorems 28.8 and 28.13]) that a nondegenerate metric continuum A is an arc if and only if A is homeomorphic to $[0, 1]$. Since a metrizable product of arcs is a compact, connected and locally connected metric space, it follows [4, Theorem 31.2] that a metrizable product of arcs is arcwise connected. However, examples have been constructed by S. Mardesic [2] and [3] and J. L. Cornette and B. Lehman [1] of locally connected Hausdorff continua which are not arcwise connected. Thus the above argument will not suffice for a nonmetrizable product of arcs, even if each factor space is metrizable. In this paper we show that the arbitrary product of arcwise connected spaces is arcwise connected.

Lemma. Let $\{X_\alpha: \alpha \in \mathcal{A}\}$ be a collection of nondegenerate arcs, and let X denote the product space of this collection. If the end points of X_α are a_α and b_α, then there is an arc in X from f to g where f is that point for which $f(\alpha) = a_\alpha$ and g is that point for which $g(\alpha) = b_\alpha$.

Proof. Let \leq be a well-ordering of \mathcal{A}, and let "1" denote the first element of \mathcal{A}, and "$\alpha + 1$" the successor of α in \mathcal{A}. For each $\alpha \in \mathcal{A}$, define the "edge" A_α of X and points f_α and g_α of X as follows:

$$A_\alpha = \{h \in X: h(\beta) = b_\beta, \beta < \alpha; h(\beta) = a_\beta, \alpha < \beta\},$$

$$f_\alpha(\beta) = b_\beta, \quad \beta < \alpha, \quad g_\alpha(\beta) = b_\beta, \quad \beta \leq \alpha,$$

$$= a_\beta, \quad \beta \geq \alpha; \quad = a_\beta, \quad \beta > \alpha.$$
We show that for each $\alpha \in \mathcal{A}$, the following statements are satisfied:

(a) $f_i = f$, and $g_\alpha = f_{\alpha+1}$;
(b) $A_\alpha \cap A_{\alpha+1} = \{g_\alpha\}$;
(c) A_α is an arc homeomorphic to X_α in X and the end points of A_α are f_α and g_α;
(d) if $\alpha, \gamma \in \mathcal{A}$ and $\alpha + 1 < \gamma$, then $A_\alpha \cap A_\gamma = \emptyset$;
(e) $\bigcup_{\beta < \alpha} A_\beta \cup \{f_\beta\}$ is an arc in X with end points f and f_α. Further, $\bigcup_{\alpha \in \mathcal{A}} A_\alpha \cup \{g\}$ is an arc in X with end points f and g.

It is immediate from the definitions that (a) and (b) are satisfied.

If we define a function $\theta : X \to X$ by

$$\theta(x) = \begin{cases} b_\delta, & \delta < \alpha, \\ x, & \delta = \alpha, \\ a, & \delta > \alpha, \end{cases}$$

then θ is a homeomorphism from X_α onto A_α such that $\theta(a_\alpha) = f_\alpha$, and $\theta(b_\alpha) = g_\alpha$, so (c) is satisfied. Now if $\alpha, \gamma \in \mathcal{A}$, with $\alpha + 1 < \gamma$, and $h \in A_\alpha$, then $h(\alpha + 1) = a_{\alpha + 1} \neq b_{\alpha + 1}$. If $h \in A_\gamma$, then $h(\alpha + 1) = b_{\alpha + 1}$, and it follows that $A_\alpha \cap A_\gamma = \emptyset$. Thus (d) is satisfied.

We now proceed to prove (e) by induction on the well-ordered set \mathcal{A}. Let $I(\beta)$ be the statement: $\bigcup_{\alpha < \beta} A_\alpha \cup \{f_\beta\}$ is an arc in X with end points f and f_β.

If $\beta = 1$, then $\bigcup_{\alpha < 1} A_\alpha \cup \{f_1\} = \{f\}$ so it is an (degenerate) arc with end points f and f_1. Suppose that for some $\beta \in \mathcal{A}$, $1 < \beta$, that we have shown that $I(\alpha)$ holds for all $\alpha < \beta$. We consider two cases.

Case 1. $\beta = \gamma + 1$ for some $\gamma \in \mathcal{A}$. By the induction hypothesis $\bigcup_{\alpha < \gamma} A_\alpha \cup \{f_\gamma\}$ is an arc in X with end points f and f_γ, and we have shown that A_γ is an arc in X with end points f_γ and $g_\gamma = f_{\gamma + 1} = f_\beta$. If $h \in \bigcup_{\alpha < \gamma} A_\alpha \cap A_\gamma$, then it follows from (d) that $\gamma = \delta + 1$ for some $\delta \in \mathcal{A}$ and $h \in A_\delta \cap A_\gamma$. It then follows from (a) and (b) that $h = g_\delta = f_{\beta + 1} = f_\gamma$, and that $\bigcup_{\alpha < \gamma} A_\alpha \cup \{f_\gamma\} \cap A_\gamma = \{f_\gamma\}$. We have then that $\bigcup_{\alpha < \gamma} A_\alpha \cup \{f_\gamma\}$ and A_γ are arcs which meet in a single point, f_γ, and that f_γ is an end point of each. Thus their union is an arc with end points f_1 and $g_\gamma = f_\beta$. That is $\bigcup_{\alpha < \gamma} A_\alpha \cup \{f_\beta\}$ is an arc with end points f and $g_\gamma = f_\beta$.

Case 2. β has no immediate predecessor in \mathcal{A}. There are four steps in the argument.

1. $\bigcup_{\alpha < \beta} A_\alpha$ is connected;
2. If $h \in X$ and $h \notin \bigcup_{\alpha < \beta} A_\alpha \cup \{f_\beta\}$, then h is not a limit point of $\bigcup_{\alpha < \beta} A_\alpha$;
3. f_β is a limit point of $\bigcup_{\alpha < \beta} A_\alpha$, so $\bigcup_{\alpha < \beta} A_\alpha \cup \{f_\beta\}$ is a continuum and f_β is not a cut point of $\bigcup_{\alpha < \beta} A_\alpha \cup \{f_\beta\}$;
4. f is not a cut point of $\bigcup_{\alpha < \beta} A_\alpha \cup \{f_\beta\}$, and if $h \in \bigcup_{\alpha < \beta} A_\alpha$ and $h \neq f_\beta$,
then h is a cut point of $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}$; thus $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}$, is an arc with end points f and f_β.

Proof of (1). By the induction hypothesis, $\bigcup_{\alpha < \beta} A_{\alpha} = \bigcup_{\gamma < \beta} \left(\bigcup_{\alpha < \gamma} A_{\alpha} \right)$ is the union of connected sets each of which contains f and is therefore connected.

Proof of (2). For each $\alpha \in \mathcal{A}$ let P_α be the projection map of X onto X_{α}. Suppose that $h \in X - \left(\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\} \right)$. Let γ be the first member of \mathcal{A} such that $h(\gamma) \neq f_\beta(\gamma)$. If $\beta \leq \gamma$ then $f_\beta(\gamma) = a_\gamma \neq h(\gamma)$ and $P_\gamma^{-1}(X_\gamma - \{a_\gamma\})$ is open in X_γ contains h and misses $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}$. Suppose then that $\gamma < \beta$. Then if $\delta < \gamma$, $h(\delta) = b_\delta$ and $h(\gamma) \neq b_\gamma$. If for all $\epsilon \in \mathcal{A}$ such that $\gamma < \epsilon$, $h(\epsilon) = a_\epsilon$, then $h \in A_\gamma$, contrary to assumption. Thus for some $\epsilon \in \mathcal{A}$, $\gamma < \epsilon$ and $h(\epsilon) \neq a_\epsilon$. It now follows from the definition of the sets A_α that the open set $P_\gamma^{-1}(X_\gamma - \{b_\gamma\}) \cap P_\epsilon^{-1}(X_\epsilon - \{a_\epsilon\})$ contains h and misses $\bigcup_{\alpha < \beta} A_\alpha$. Thus h is not a limit point of $\bigcup_{\alpha < \beta} A_{\alpha}$.

Proof of (3). We consider the net $\{g_\alpha\}_{\alpha < \beta}$. For all $\delta \in \mathcal{A}$, the net $\{P_\delta(g_\alpha)\}_{\alpha < \beta}$ converges to $P_\delta(f_\beta)$. For if $\beta \leq \delta$, then for all $\alpha < \beta$, $g_\alpha(\delta) = a_\alpha = f_\beta(\delta)$; and if $\delta < \beta$, then since β has no immediate predecessor, there is a $\gamma \in \mathcal{A}$, such that $\delta < \gamma < \beta$ and if $\gamma < \epsilon$, then $P_\delta(g_\epsilon) = g_\epsilon(\delta) = b_\delta = f_\beta(\delta)$. It follows that the net $\{g_\alpha\}_{\alpha < \beta}$ converges in X to f_β. It now follows immediately from (1) that f_β is not a cut point of $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}$.

Proof of (4). Since $\bigcup_{\alpha < \beta} A_{\alpha} - \{f\} = \bigcup_{\gamma < \beta} \left[\bigcup_{\alpha < \gamma} A_{\alpha} - \{f\} \right]$ is a union of the connected sets $\bigcup_{\alpha < \gamma} A_{\alpha} - \{f\}$ each of which contains f_2, $\bigcup_{\alpha < \beta} A_{\alpha} - \{f\}$ is connected.

Now suppose that $h \in \bigcup_{\alpha < \beta} A_{\alpha}$, $h \neq f$. Let α^* be the first member of \mathcal{A} such that $h \in A_{\alpha^*}$, and let Y_{α^*}, Z_{α^*} be the subarcs in X_{α^*} (one possibly degenerate) with end points a_{α^*}, $h(\alpha^*)$ and $h(\alpha^*)$, b_{α^*}, respectively. For each $\alpha \in \mathcal{A}$, define S_α and T_α as follows:

$$S_\alpha = \begin{cases} \{b_\alpha\}, & \alpha < \alpha^* \\ Z_{\alpha^*}, & \alpha = \alpha^* \\ X_{\alpha^*}, & \alpha > \alpha^* \end{cases}$$

$$T_\alpha = \begin{cases} X_{\alpha^*}, & \alpha < \alpha^* \\ \{a_\alpha\}, & \alpha > \alpha^* \end{cases}$$

Let S and T be the product spaces respectively of the collections $\{S_\alpha : \alpha \in \mathcal{A}\}$ and $\{T_\alpha : \alpha \in \mathcal{A}\}$. Then S and T are closed in X and $S \cap T = \{h\}$.

Now $f \in T$, $f_\beta \in S$, and $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\} \subset S \cup T$. It follows that $((\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}) - \{h\}) \cap S$, $((\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}) - \{h\}) \cap T$ is a separation of $(\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}) - \{h\}$, so h is a cut point of $\bigcup_{\alpha < \beta} A_{\alpha} \cup \{f_\beta\}$. Thus $I(\beta)$ is established and statement (e) follows.

By argument similar to that in the induction step of the proof of (e), it follows that $\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ is connected; that if $h \in X - \bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$ and $h \neq g$, then h is not a limit point of $\bigcup_{\alpha \in \mathcal{A}} A_{\alpha}$; that the net $\{g_\alpha\}_{\alpha \in \mathcal{A}}$ converges in X to g, and that f and g are the only noncut points of $\bigcup_{\alpha \in \mathcal{A}} A_{\alpha} \cup \{g\}$. Thus $\bigcup_{\alpha \in \mathcal{A}} A_{\alpha} \cup \{g\}$ is an arc in X with end points f and g.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem. If \(\{ Y_x : x \in \mathcal{A} \} \) is a collection of arcwise connected spaces, and \(Y \) is the product space of the collection, then \(Y \) is arcwise connected.

Proof. Let \(f, g \) be points of \(Y \). If \(f = g \), there is nothing to prove, so assume that \(f \neq g \). Let \(\mathcal{A}^* = \{ x \in \mathcal{A} : f(x) \neq g(x) \} \). For each \(x \in \mathcal{A}^* \), let \(X_x \) be an arc in \(Y_x \) with end points \(a_x = f(x) \) and \(b_x = g(x) \). Let \(f^* \) and \(g^* \) be the restrictions to \(\mathcal{A}^* \) of \(f \) and \(g \) respectively, and let \(X^* \) be the product space of the collection \(\{ X_x : x \in \mathcal{A}^* \} \). Then \(\{ X_x : x \in \mathcal{A}^* \} \), \(f^* \) and \(g^* \) satisfy the conditions of the Lemma, so there is in \(X^* \) an arc \(A \) with end points \(f^* \) and \(g^* \). Define a map \(\theta : X^* \to Y \) by

\[
[\theta(h)](x) = f(x), \quad x \notin \mathcal{A}^*,
\]

\[
= h(x), \quad x \in \mathcal{A}^*.
\]

Then \(\theta \) is a homeomorphism of \(X^* \) onto \(\theta(X^*) \) with \(\theta(f^*) = f, \theta(g^*) = g \). Thus \(\theta(A) \) is an arc in \(Y \) with end points \(f \) and \(g \).

References

Department of Mathematics, University of Guelph, Guelph, Ontario, Canada