Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Kahane's construction and the weak sequential completeness of $ L\sp{1}$


Author: E. A. Heard
Journal: Proc. Amer. Math. Soc. 44 (1974), 96-100
MSC: Primary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1974-0365115-X
MathSciNet review: 0365115
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \lambda $ is a normalized Lebesgue measure $ ($arc length$ /2\pi )$ on $ T = \{ \vert z\vert = 1\} $, the Gelfand map permits $ {L^\infty }{(\lambda )^ \ast }$ to be identified with $ M(X)$, the space of finite Baire measures on $ X$, the maximal ideal space of $ {L^\infty }(\lambda )$. The measure $ {m_0}$ in $ M(X)$ represents $ \lambda :\int {X\hat fd{m_0} = \int {Tfd\lambda } } $ for all $ f \in {L^\infty }(\lambda )$. Furthermore $ \mu \ll {m_0}$ if and only if $ \mu $ represents some measure of the form $ \phi d\lambda ,\phi \in {L^1}(\lambda )$. Using this fact and a sum constructed by J. P. Kahane, $ \Sigma {\hat h^{n(j)}}$ when $ \hat h$ is an appropriate function guaranteed by Urysohn's lemma, develops a proof that $ {L^1}(\lambda )$ is weakly sequentially complete.


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [2] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 #A2844. MR 0133008 (24:A2844)
  • [3] J. P. Kahane, Another theorem on bounded analytic functions, Proc. Amer. Math. Soc. 18 (1967), 827-831. MR 35 #5912. MR 0215068 (35:5912)
  • [4] Michael C. Mooney, A theorem on bounded analytic functions, Pacific J. Math. 43 (1972), 457-463. MR 0313820 (47:2374)
  • [5] E. A. Heard and J. H. Wells, An interpolation problem for subalgebra of $ {H^\infty }$, Pacific J. Math. 28 (1969), 543-553. MR 39 #4681. MR 0243359 (39:4681)
  • [6] J. T. Schwartz, A note on the space $ L_p^ \ast $, Proc. Amer. Math. Soc. 2 (1951), 270-275. MR 12, 718. MR 0040588 (12:718c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30

Retrieve articles in all journals with MSC: 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0365115-X
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society