On polynomial density in

Author:
Thomas A. Metzger

Journal:
Proc. Amer. Math. Soc. **44** (1974), 326-330

MSC:
Primary 30A98

MathSciNet review:
0340623

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a bounded Jordan domain. Define , the Bers space, to be the Banach space of holomorphic functions on , such that is finite, where is the Poincaré metric for . It is well known that the polynomials are dense in for and we shall prove they are dense in for if the boundary of is rectifiable. Also some remarks are made in case the boundary of is not rectifiable.

**[1]**D. Aharonov, H. S. Shapiro, and A. L. Shields,*Weakly invertible elements in the space of square-summable holomorphic functions*, J. London Math. Soc. (2)**9**(1974/75), 183–192. MR**0365150****[2]**Lipman Bers,*Automorphic forms and Poincaré series for infinitely generated Fuchsian groups*, Amer. J. Math.**87**(1965), 196–214. MR**0174737****[3]**Lipman Bers,*A non-standard integral equation with applications to quasiconformal mappings*, Acta Math.**116**(1966), 113–134. MR**0192046****[4]**Peter L. Duren,*Theory of 𝐻^{𝑝} spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655****[5]**C. J. Earle and A. Marden,*Projections to automorphic functions*, Proc. Amer. Math. Soc.**19**(1968), 274–278. MR**0224813**, 10.1090/S0002-9939-1968-0224813-6**[6]**T. W. Gamelin,*𝐻^{𝑝} spaces and extremal functions in 𝐻¹*, Trans. Amer. Math. Soc.**124**(1966), 158–167. MR**0213877**, 10.1090/S0002-9947-1966-0213877-4**[7]**Marvin I. Knopp,*A corona theorem for automorphic forms and related results*, Amer. J. Math.**91**(1969), 599–618. MR**0251219****[8]**T. A. Metzger and K. V. Rajeswara Rao,*On integrable and bounded automorphic forms*, Proc. Amer. Math. Soc.**28**(1971), 562–566. MR**0280713**, 10.1090/S0002-9939-1971-0280713-7**[9]**T. A. Metzger and M. Sheingorn,*Polynomial approximation in the Bers' spaces*(to appear).**[10]**Thomas A. Metzger,*On polynomial approximation in 𝐴_{𝑞}(𝐷)*, Proc. Amer. Math. Soc.**37**(1973), 468–470. MR**0310260**, 10.1090/S0002-9939-1973-0310260-7**[11]**Mark Sheingorn,*Poincaré series of polynomials bounded away from zero on a fundamental region*, Amer. J. Math.**95**(1973), 729–749. MR**0344455**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A98

Retrieve articles in all journals with MSC: 30A98

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0340623-6

Keywords:
Polynomial density,
Bers spaces

Article copyright:
© Copyright 1974
American Mathematical Society