ON A THEOREM OF A. PEŁCZYŃSKI

JOHN L. B. GAMLEN

Abstract. If Y is a weakly complete Banach space, and X is a Banach space with separable dual, then every continuous linear operator from $C_\infty(K)$ to Y must be weakly compact. Here $C_\infty(K)$ denotes the space of continuous functions on the compact Hausdorff space K, having values in X.

In 1953, A. Grothendieck [5] proved that if Y is a weakly complete Banach space, then every continuous linear map from $C(K)$ to Y must be weakly compact. (Here K is an arbitrary compact Hausdorff space.) Later A. Pełczyński [7] weakened the assumption on Y, to the requirement that c_0 is not isomorphic to any subspace of Y. In 1962, Pełczyński [8, p. 645] obtained a result which implies that $C(K)$ may be replaced in the above by $C_X(K)$, the space of continuous X-valued functions on K, where X is a reflexive Banach space. (See also J. Batt and E. J. Berg [2, p. 237], where a different but related proof is given.) Necessary and sufficient conditions on X for this to still work are not known. However, in order for every continuous linear map $T:C_X(K)\to Y$ to be weakly compact for a given Y, it is obviously necessary that every continuous operator from X to Y be weakly compact. But if X has a separable dual space, this holds for weakly complete Y, since Cantor's diagonal argument allows us to extract from every bounded sequence in X a subsequence which is weakly Cauchy. This suggests our result below.

Theorem. If Y is a weakly complete Banach space, and X is a Banach space whose separable subspaces have separable duals, then every continuous linear operator from $C_X(K)$ to Y must be weakly compact.

This does not quite include the result of Pełczyński because of our slightly stronger assumption that Y is weakly complete. The interesting thing is that in the above theorem we cannot replace weak completeness of Y by the assumption that Y has no subspace isomorphic to c_0. The counterexample is the well-known space J of R. C. James [6], which has
separable bidual, but is not reflexive. (The identity map on \(J \) fails to be weakly compact, even though \(J \) contains no copy of \(c_0 \).)

Batt and Berg's proof of Pelczyński's result proceeds via weak compactness of the adjoint map. This involves a weak compactness theorem in the space of \(X' \)-valued measures, which will not work in our case, as it depends on reflexivity of \(X \). However this approach was used in [1] to prove weak compactness of a map from a \(C^* \)-algebra to a Banach space containing no copy of \(c_0 \). (The details are, needless to say, quite different.)

Proof of the Theorem. We first deal with the case that \(K \) and \(X \) (hence also \(X' \)) are separable. By the representation theorem of [2, pp. 225–228], we may represent our map \(T: C_X(K) \to Y \) as an integral with respect to a measure \(\mu \) taking values in the space \([X, Y]\) of bounded operators between \(X, Y \), and having semivariation absolutely continuous with respect to some positive regular measure \(\lambda \) on \(K \). Thus the adjoint \(T' \) maps \(Y' \) into a space of measures with values in \(X' \), all of which are absolutely continuous with respect to \(\lambda \). For such measures the Radon-Nikodym theorem is well known to hold, so we may embed the range of \(T' \) in \(L^1(X', \lambda) \), the space of \(\lambda \)-integrable, \(X' \)-valued functions, by the formula:

\[
\langle f, T'y' \rangle = \langle Tf, y' \rangle = \int f d(y'\mu) = \int f(d(y'\mu)/d\lambda) d\lambda,
\]

for \(f \in C_X(K), y' \in Y' \).

Associated with the element \(y'\mu \) in \(T'Y' \) is the function \(d(y'\mu)/d\lambda \) in \(L^1(X', \lambda) \), and it is easy to see that the embedding of \(T'Y' \) into \(L^1 \) is norm increasing. Since \(L^1(X', \lambda) \) is separable, we conclude that \(T'Y' \) is a separable subspace of the dual of \(C_X(K) \). This fact enables us to use Cantor's diagonal argument to extract a subsequence \(\{f'_{n_m}\} \) such that for every \(y' \) in \(Y' \) the sequence \(\{\langle f'_{n_m}, T'y' \rangle\} = \{\langle Tf'_{n_m}, y' \rangle\} \) is Cauchy. Thus by weak completeness of \(Y \), \(\{Tf'_{n_m}\} \) converges weakly in \(Y \), proving \(T \) is weakly compact.

The reduction to the case \(X, K \), are separable is standard; see for example [2].

References

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA