Topological spaces in which Blumberg's theorem holds

Author:
H. E. White

Journal:
Proc. Amer. Math. Soc. **44** (1974), 454-462

MSC:
Primary 54C05

MathSciNet review:
0341379

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: H. Blumberg proved that, if is a real-valued function defined on the real line , then there is a dense subset of such that is continuous. J. C. Bradford and C. Goffman showed [**3**] that this theorem holds for a metric space if and only if is a Baire space. In the present paper, we show that Blumberg's theorem holds for a topological space having a -disjoint pseudo-base if and only if is a Baire space. Then we identify some classes of topological spaces which have -disjoint pseudo-bases. Also, we show that a certain class of locally compact, Hausdorff spaces satisfies Blumberg's theorem. Finally, we describe two Baire spaces for which Blumberg's theorem does not hold. One is completely regular, Hausdorff, cocompact, strongly -favorable, and pseudo-complete; the other is regular and hereditarily Lindelöf.

**[1]**J. M. Aarts, J. de Groot, and R. H. McDowell,*Cotopology for metrizable spaces*, Duke Math. J.**37**(1970), 291–295. MR**0259859****[2]**H. Bennett,*Real valued functions on semimetric spaces*, Notices Amer. Math. Soc.**19**(1972), A-605. Abstract #72T-G118.**[3]**J. C. Bradford and Casper Goffman,*Metric spaces in which Blumberg’s theorem holds*, Proc. Amer. Math. Soc.**11**(1960), 667–670. MR**0146310**, 10.1090/S0002-9939-1960-0146310-1**[4]**Gustave Choquet,*Lectures on analysis. Vol. I: Integration and topological vector spaces*, Edited by J. Marsden, T. Lance and S. Gelbart, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0250011****[5]**Casper Goffman,*Real functions*, Rinehart & Co., Inc., New York, N. Y., 1953. MR**0054006****[6]**Casper Goffman, C. J. Neugebauer, and T. Nishiura,*Density topology and approximate continuity*, Duke Math. J.**28**(1961), 497–505. MR**0137805****[7]**Casper Goffman and Daniel Waterman,*Approximately continuous transformations*, Proc. Amer. Math. Soc.**12**(1961), 116–121. MR**0120327**, 10.1090/S0002-9939-1961-0120327-6**[8]**R. F. Levy,*Baire spaces and Blumberg functions*, Notices Amer. Math. Soc.**20**(1973), A-292. Abstract #73T-G42.**[9]**John C. Oxtoby,*Cartesian products of Baire spaces*, Fund. Math.**49**(1960/1961), 157–166. MR**0140638**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54C05

Retrieve articles in all journals with MSC: 54C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0341379-3

Keywords:
Baire space,
pseudo-base,
-disjoint pseudo-base,
density topology

Article copyright:
© Copyright 1974
American Mathematical Society