SOME PROPERTIES OF SELF-INVERSIVE POLYNOMIALS

P. J. O’HARA AND R. S. RODRIGUEZ

Abstract. A complex polynomial is called self-inversive [5, p. 201] if its set of zeros (listing multiple zeros as many times as their multiplicity indicates) is symmetric with respect to the unit circle. We prove that if \(P \) is self-inversive and of degree \(n \) then \(\|P'\| = \frac{1}{n} \|P\| \) where \(\|P'\| \) and \(\|P\| \) denote the maximum modulus of \(P' \) and \(P \), respectively, on the unit circle. This extends a theorem of P. Lax [4]. We also show that if \(P(z) = \sum_{j=0}^{n} a_j z^j \) has all its zeros on \(|z| = 1 \) then \(2 \sum_{j=0}^{n} |a_j|^2 \leq \|P\|^2 \). Finally, as a consequence of this inequality, we show that when \(P \) has all its zeros on \(|z| = 1 \) then \(2^{1/2} |a_n| \leq \|P\| \) and \(2 |a_j| \leq \|P\| \) for \(j \neq n/2 \). This answers in part a question presented in [3, p. 24].

1. Main theorems. We begin with a

Definition. A polynomial \(P \) with zeros \(z_1, z_2, \ldots, z_n \) is self-inversive if \(\{z_1, z_2, \ldots, z_n\} = \{1/z_1, 1/z_2, \ldots, 1/z_n\} \).

Some properties of self-inversive polynomials are given by the following lemmas. These properties have been noted by other authors (see for example [1] and [5, p. 204]). In what follows, if \(P(z) = \sum_{j=0}^{n} a_j z^j \) then \(\overline{P}(z) \) denotes \(\sum_{j=0}^{n} \overline{a_j} z^j \).

Lemma 1. If \(P(z) = \sum_{j=0}^{n} a_j z^j, a_n \neq 0, \) then the following are equivalent:

(i) \(P \) is self-inversive.
(ii) \(a_n P(z) = a_0 z^n \overline{P}(1/z) \) for each complex number \(z \).
(iii) \(a_0 \overline{a_j} = a_n a_{n-j} ; j = 0, 1, \ldots, n \).

This lemma follows easily from the previous definition.

Lemma 2. If \(P \) is self-inversive and \(P(z) = \sum_{j=0}^{n} a_j z^j, a_n \neq 0, \) then

(i) \(\overline{a_n} [nP(z) - zP'(z)] = a_0 z^{n-1} \overline{P'}(1/z) \) for each \(z \),

and

(ii) \(|nP(z)|/zP'(z) - 1| = 1 \) for each \(z \) on \(|z| = 1 \).

Proof. By the previous lemma we can write: \(\overline{a_n} P(z) = a_0 z^n \sum_{j=0}^{n} \overline{a_j} z^{-j} \).

We obtain (i) by differentiating this last identity. Then (ii) follows from
(i) by noting that $1/z = z$ when $|z| = 1$, and $|a_0| = |a_n|$. We remark that Lemma 2 implies that if P is self-inversive then P' has no zeros on $|z| = 1$ except at the multiple zeros of P, a result that is proved by other means in [5, p. 205].

By a circular region is meant the image of the unit disk (open or closed) under a bilinear transformation. We shall need the following theorem of DeBruijn [2].

Theorem. Let K be a circular region and let P be any polynomial of degree n. If $u \in K$ and $Q(z) = n^{-1}[nP(z) + (u - z)P'(z)]$ then $Q(K) \subseteq P(K)$.

Throughout the rest of this paper we shall use the notation $\|P\|$, P a complex polynomial, to denote the maximum modulus of P on the unit circle. The next theorem extends the result of P. Lax given in [4].

Theorem 1. If P is a self-inversive polynomial of degree n then $\|P'\| = \frac{1}{2}n\|P\|$.

Proof. Let e be a point on $|z| = 1$ such that $\|P'\| = |P'(e)|$. Choose u on $|z| = 1$ so that $nP(e) - eP'(e)$ and $uP'(e)$ have the same argument. Then by DeBruijn’s theorem we have

$$nP(e) - eP'(e) + uP'(e) \leq n \|P\|,$$

and hence

$$|nP(e) - eP'(e)| + |P'(e)| \leq n \|P\|.$$

By Lemma 2, $|nP(e) - eP'(e)| = |P'(e)|$, and so $2\|P'\| \leq n\|P\|$. To reverse this inequality we again use Lemma 2 to obtain that if $|z| = 1$ then $n|P(z)| = 2|P'(z)|$ and hence $n\|P\| \leq 2\|P'\|$.

Next we consider the following conjecture presented in [3, p. 24]: If P has all its zeros on $|z| = 1$ and $P(z) = \sum_{j=0}^{n} a_j z^j$ then $2|a_j| \leq \|P\|$ for $j = 0, 1, \ldots, n$. We prove the conjecture when the degree n is odd; when n is even we show that $2|a_j| \leq \|P\|$ for $j \neq n/2$, and $2^{1/2}|a_{n/2}| \leq \|P\|$. In the final section we show that the estimate, $2|a_{n/2}| \leq \|P\|$ for n even, is equivalent to the above conjecture. The validity of this estimate is not established by this paper; however, some partial results are presented.

We need

Theorem 2. If P is self-inversive and of degree n, and $\sum_{j=-\infty}^{\infty} c_j z^j$ is the Laurent expansion about 0 of $nP(z)/zP'(z)$ in some annulus that contains the unit circle (see the remark following Lemma 2), then

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{nP(e^{i\theta})}{P'(e^{i\theta})} \right|^2 d\theta = 2 \text{Re}(c_0).$$
In particular if all the zeros of \(P \) lie on \(|z| = 1 \) then \(c_0 = 1 \) and

\[
\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{nP(e^{i\theta})}{P'(e^{i\theta})} \right|^2 d\theta = 2.
\]

Proof. Multiplying (i) of Lemma 2 by \(P(z) \) and then using (ii) of Lemma 1, we obtain that

\[
|nP(z)/P'(z)|^2 = 2 \text{ Re}[nP(z)/zP'(z)] \quad \text{for } |z| = 1.
\]

The first part of the theorem now follows since

\[
c_0 = \frac{1}{2\pi} \int_0^{2\pi} \frac{nP(e^{i\theta})}{P'(e^{i\theta})} d\theta.
\]

When \(P \) has all its zeros on the unit circle then the Gauss-Lucas theorem implies that \(P' \) has all its zeros in \(|z| \leq 1 \). Therefore the function defined by \(nP(z)/[zP'(z)] \) is analytic in \(|z| \geq 1 \) and at \(z = \infty \), and hence \(c_0 = \lim_{z \to \infty} nP(z)/[zP'(z)] = 1 \).

Corollary 1. If \(P \) is self-inversive and \(P(z) = \sum_{j=0}^{n} a_jz^j, \ a_n \neq 0 \), then

\[
2 \sum_{j=0}^{n} |a_j|^2 \leq \|P\|^2 \text{ Re}(c_0). \quad \text{In particular if } P \text{ has all its zeros on } |z| = 1 \text{ then } 2 \sum_{j=0}^{n} |a_j|^2 \leq \|P\|^2. \quad \text{Moreover these inequalities are equalities if and only if the zeros of } P \text{ are rotations of the } n \text{th roots of unity.}
\]

Proof. By applying Parseval's identity and Theorem 1, we obtain:

\[
\sum_{j=0}^{n} |a_j|^2 = \frac{1}{2\pi} \int_0^{2\pi} |P'(e^{i\theta})|^2 \left| \frac{P(e^{i\theta})}{P'(e^{i\theta})} \right|^2 d\theta \leq \left[\frac{\|P\|^2}{n} \right] \left[\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{nP(e^{i\theta})}{P'(e^{i\theta})} \right|^2 d\theta \right] = \frac{1}{n} \|P\|^2 \text{ Re}(c_0).
\]

Clearly the inequality above is equality if and only if \(|P'(z)| \) is constant for \(|z| = 1 \) or, in other words, if and only if \(P(z) = a_0 + a_nz^n \) where (since \(P \) is self-inversive) \(|a_0| = |a_n| \).

Using Corollary 1 we now prove the following theorem which answers in the previously mentioned conjecture.

Theorem 3. If \(P \) has all its zeros on \(|z| = 1 \) and \(P(z) = \sum_{j=0}^{n} a_jz^j, \ a_n \neq 0 \), then

\[
2|a_j| \leq \|P\| \quad \text{for each } j \neq n/2 \text{ and } 2^{1/2} |a_{n/2}| \leq \|P\|.
\]

Proof. From (iii) of Lemma 1 we get that \(|a_j| = |a_{n-j}|, \ j = 0, 1, \ldots, n \). Therefore if \(j \neq n/2 \) then

\[
4|a_j|^2 = 2(|a_j|^2 + |a_{n-j}|^2) \leq 2 \sum_{j=0}^{n} |a_j|^2 \leq \|P\|^2.
\]

For \(n \) even, the estimate, \(2^{1/2} |a_{n/2}| \leq \|P\| \), also follows immediately from Corollary 1.
2. Remarks concerning the middle coefficient. Throughout this section \(P \) will denote an arbitrary self-inversive polynomial (unless further restrictions are noted) with \(P(z) = \sum_{j=0}^{n} a_{j}z^{j}, \ a_{n} \neq 0 \). Also if \(P \) has all its zeros on \(|z|=1\) and \(n \) is even, then we shall refer to the estimate, \(2|a_{n/2}| \leq \|P\| \), as the middle coefficient conjecture. We present here a few remarks which are pertinent to this conjecture.

A. By using Lemma 1 it is not hard to show that the modulus of the middle coefficient of \(P^{2} \) is equal to \(\sum_{j=0}^{n} |a_{j}|^{2} \). Therefore, had we been able to establish the truth of the middle coefficient conjecture, then the second inequality of Corollary 1 (and hence Theorem 3) would have followed immediately. In other words, the middle coefficient conjecture is equivalent to the conjecture mentioned in the previous section.

B. Suppose \(n \) is even and choose \(\lambda, \ |\lambda|=1 \), so that \(\lambda^{2} = a_{n}/a_{0} \). Then by applying (iii) of Lemma 1 we obtain that for \(|z|=1\), \(\lambda P(z)z^{-n/2} = \text{Re}[Q(z)] \), where \(Q \) is a polynomial of degree \(n/2 \) with leading coefficient, \(2\lambda a_{n/2} \), and constant coefficient, \(\lambda a_{n/2} \). Therefore if \(|a_{n/2}| \leq 2|a_{n}| \) then \(Q \) has a zero in \(|z| \leq 1| \). It then follows that \(\text{Re}[Q(z)] \) vanishes somewhere on \(|z|=1 \). Thus we have established the following: if \(n \) is even and if \(|a_{n/2}| \leq 2|a_{n}| \) then \(P \) has a zero (and hence at least two) on \(|z|=1 \).

C. If \(n \) is even the polynomials defined by \(\lambda P(z) + (\|P\| + \varepsilon)z^{n/2} \), \(\varepsilon > 0 \), are self-inversive by (iii) of Lemma 1. Clearly they do not vanish on \(|z|=1 \) and so by the previous remark \(|a_{n/2}| + (\|P\| + \varepsilon)| > 2|a_{n}| \). Since \(|a_{n/2}| \leq \|P\| \), \(\varepsilon \) was arbitrary, and \(\lambda a_{n/2} \) is real, it follows that \(|a_{n/2}| + 2|a_{n}| \leq \|P\| \). Therefore we have proved: if \(n \) is even then \(|a_{n/2}| + 2|a_{n}| \leq \|P\| \); in particular the middle coefficient conjecture is true in those cases where \(|a_{n/2}| \leq 2|a_{n}| \).

D. Suppose \(n \) is even and \(P(z) = a_{n} \prod_{j=1}^{n} (z - e^{i\theta}) \). We shall omit the details, but by using the identity

\[
e^{i\theta} - e^{it} = 2i \sin ([\theta - t]/2) e^{i(\theta + t)/2}
\]

we can establish the following: the middle coefficient conjecture is equivalent to the estimate

\[
\left| \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \, d\theta \right| \leq \max_{\theta} |f(\theta)|,
\]

where \(f \) is the trigonometric polynomial of degree \(n/2 \) defined by \(f(\theta) = \prod_{j=1}^{n} \sin(\theta - \theta_{j})/2 \).

References

Department of Mathematical Sciences, Florida Technological University, Orlando, Florida 32816