ON THE SERIAL COMPLETION OF DELETED
SCHAUDER BASES BY DOMAIN ADJUSTMENT

BEN-AMI BRAUN

Abstract. Given a Schauder basis in a Banach function space
of a specified type, one can delete any finite number of elements
of the basis and still preserve serial totality by making an arbi-
trarily small adjustment of the domain.

Let \(\{\phi_n\}_{n=1}^{\infty} \) be a system of real valued functions finite almost every-
where and measurable on a set \(G \subseteq [0, 1] \), mes. \(G > 0 \). Talalyan [2], [3]
proved the following to be equivalent:

(a) \(\{\phi_n\}_{n=1}^{\infty} \) is total in measure on \(G \), that is, for every measurable
function \(f \) defined on \(G \), there exists a sequence of finite linear com-
binations of functions of the system \(\{\phi_n\}_{n=1}^{\infty} \) which converges in measure
to \(f \) on \(G \).

(b) For each positive number \(\varepsilon \), there is a measurable set \(S_\varepsilon \) whose
measure exceeds \(1 - \varepsilon \), such that \(\{\phi_n\}_{n=1}^{\infty} \) is total in \(L^2(S_\varepsilon) \).

We shall say that \(\{\phi_k\}_{k=1}^{\infty} \) is serially total in some function space, if for
any given function \(f \) in the space we can find a series \(\sum_{k=1}^{\infty} a_k \phi_k \) which con-
verges to \(f \) in the metric of the space. The result of this paper can be viewed
as a first step in changing total into serially total.

Let \(L(E) \) be a Banach space of measurable functions on a measurable
set \(E \subseteq [a, b] \) with natural linear operations. As usual, identify functions
equal almost everywhere. Postulate the following on \(L(E) \):

1. \(L(E) \) is contained in \(L^1(E) \);
2. \(L(E) \) contains the function \(1 \);
3. if \(f \in L(E) \), and if for a measurable function \(g \), \(0 \leq g(x) \leq f(x) \) almost
everywhere, then \(g \in L(E) \);
4. if \(f \in L(E) \) and \(\chi_A \) is the characteristic function of the measurable
set \(A \), then \(\|f \chi_A\| \equiv \|f\|_{L^1} \) goes to zero as \(|A| \) goes to zero, where \(|A| \) denotes
the Lebesgue measure of \(A \).

Example of spaces that satisfy (1)--(4) are the \(L^p \) spaces \(1 \leq p < \infty \) and
the separable Orlicz spaces.

Received by the editors March 30, 1972.

Key words and phrases. Schauder basis, completion, series representation.

© American Mathematical Society 1974
Theorem. Let \(\{\phi_k\}_{k=1}^{\infty} \) be a normalized basis for \(L(E) \), then given any natural number \(N_0 \) and \(\epsilon > 0 \), there exists a set \(D = D(N_0, \epsilon) \), contained in \(E \) and satisfying \(|D| > |E| - \epsilon \), such that \(\{\phi_k\}_{k=N_0}^{\infty} \) is serially total in \(L(D) \).

We should note that by [1] \(\{\phi_k\}_{k=N_0}^{\infty} \) is serially total in measure on \(E \).

We utilize a lemma from [1] as the main tool in the proof of the theorem.

Lemma. Let \(\{\phi_k\}_{k=1}^{\infty} \) be a normalized Schauder basis for \(L(E) \), \(g \) a measurable function finite almost everywhere on \(E \). Then given \(\epsilon > 0 \) and a natural number \(N \), there exists a set \(e_0 \) and real numbers \(b_{N+1}, \ldots, b_m \) such that

\[
\begin{align*}
e_0 & \subset E, \text{ and } |e_0| < \epsilon; \\
|b_k| & < \epsilon \text{ for } N + 1 \leq k \leq m; \\
\left\| \sum_{k=N+1}^{m} b_k \phi_k - g \right\|_{(E|_e)} & < \epsilon; \\
\left\| \sum_{k=N+1}^{s} b_k \phi_k \right\|_e & \leq \epsilon + \|g\|_e \text{ for all } N + 1 \leq s \leq m,
\end{align*}
\]

and every measurable subset \(e \) of \(E \setminus e_0 \).

Proof of Theorem. The required set \(D \) will be a certain infinite intersection. The individual factors of this intersection are inductively determined.

Choose a sequence of positive terms \(\epsilon_n \) with the property

\[
\sum_{n=1}^{\infty} \epsilon_n = \epsilon.
\]

By virtue of the lemma we may choose a set \(D_1 \) whose complement \(E_1 \) has measure less than \(\epsilon_1 \), and a \(\Phi \)-polynomial

\[
P_{11} = \sum_{j=v(1,0)+1}^{v(1,1)} b_j \phi_j \text{ where } v(1, 0) = N_0
\]

satisfying the following conditions:

\[
\begin{align*}
(5) \quad |b_j| & < \epsilon_1, \text{ for } v(1, 0) < j \leq v(1, 1), \\
(6) \quad \|\phi_1 - P_{11}\|_{D_1} & < \epsilon_1, \\
(7) \quad \sup_{s \leq v(1,1)} \left\| \sum_{j=v(1,0)+1}^{s} b_j \phi_j \right\|_e & < \epsilon_1 + \|\phi_1\|_e
\end{align*}
\]

for all measurable subsets \(e \) contained in \(D_1 \).

Again applying the lemma twice in succession allows us to choose for
$i=1, 2$, sets D_{2i} with respective complements E_{2i} and Φ-polynomials

$$P_{2i} = \sum_{j=v(2,i)-1}^{v(2,i)} b_j \phi_j$$

with $v(1, 1)<v(2, 0)<v(2, 1)<v(2, 2)$ such that

(8) $|E_{2i}| < \varepsilon_2/2$ for $i = 1, 2$;
(9) $|b_j| < \varepsilon_2$ if $v(2, 0) < j \leq v(2, 2)$;
(10) $\|\phi_1 - P_{11}\|_{D_{21}} < \varepsilon_2/2$;
(11) $\|\phi_2 - P_{22}\|_{D_{22}} < \varepsilon_2/2$;
(12) $\sup_{\varepsilon \leq v(2,1)} \left\| \sum_{j=v(2,0)+1}^{v(2,1)} b_j \phi_j \right\|_e < \varepsilon_2 + \|\phi_1 - P_{11}\|_e$

for all measurable subsets e of D_{21};

(13) $\sup_{\varepsilon \leq v(2,2)} \left\| \sum_{j=v(2,2)+1}^{v(2,2)} b_j \phi_j \right\|_e < \varepsilon_2 + \|\phi_2\|_e$

for all measurable subsets e of D_{22}.

Let $D_2 = \bigcap_{i=1}^2 D_{2i}$ and $D_2 = D_1 \cap D_2^*$, then $|D_2| > |E| - \sum_{i=1}^2 \varepsilon_i$. By virtue of (12), (13), (6) and the definition of the set D_2 we obtain

(14) $\sup_{\varepsilon \leq v(2,k)} \left\| \sum_{j=v(2,k)+1}^{v(2,k)} b_j \phi_j \right\|_e \leq \begin{cases} \varepsilon_2 + \varepsilon_1 & \text{if } k = 1; \\ \varepsilon_2 + 1 & \text{if } k = 2; \end{cases}$

for all measurable subsets e of D_2.

In the nth step we apply the lemma successively to the functions

(15) $\Psi_k = \phi_k - \sum_{j=k}^{n-1} P_{jk}$ with $k = 1, 2, \cdots, n - 1$,
(16) $\Psi_n = \phi_n$.

The lemma makes it possible to choose for $k=1, 2, \cdots, n$, sets D_{nk} with respective complements E_{nk} and Φ-polynomials

$$P_{nk} = \sum_{j=v(n,k)-1}^{v(n,k)} b_j \phi_j$$

where $v(n-1, n-1)<v(n, 0)<v(n, 1)<\cdots<v(n, n)$ such that the following holds:

(18) $|E_{nk}| < \varepsilon_n/n$;
(19) $|b_j| < \varepsilon_n$ for $v(n, 0) < j \leq v(n, n)$;
(20) $\|\Psi_k - P_{nk}\|_{D_{nk}} < \varepsilon_n/n$;
(21) $\sup_{\varepsilon \leq v(n,k)} \left\| \sum_{j=v(n,k)-1}^{v(n,k)} b_j \phi_j \right\|_e \leq \varepsilon_n + \|\Psi_k\|_e$
for all measurable subsets e of D_{nk}. Let $D_n^* = \bigcap_{k=1}^n D_{nk}$ and $D_n = D_{n-1} \cap D_n^*$, then $|D_n| > |E| - \sum_{k=1}^n \varepsilon_k$. In analogous fashion to (14) of the second step we obtain in the nth step

$$\sup_{s \leq v(n,k)} \left\| \sum_{j=v(n,k)-1}^e b_j \phi_j \right\|_e \leq \begin{cases} \varepsilon_n + \varepsilon_{n-1} & \text{if } k < n; \\ \varepsilon_n + 1 & \text{if } k = n; \end{cases}$$

for all measurable subsets e of D_n. Continuing by inductive construction it is easy to see that (18)–(22) holds for each natural number n. Define $D = \bigcap_{n=1}^\infty D_n$, then $|D| \geq |E| - \sum_{k=1}^\infty \varepsilon_k \geq |E| - \varepsilon$.

Now we are ready to show that given any function f in $F(D)$ we can find a series from \(\{\phi_j : v(m, 0) \leq j \leq v(m, m), \; m=1, 2, \ldots\} \) which will converge to f in the $F(D)$ norm. In fact, if $\sum_{k=1}^\infty a_k \phi_k$ is the Schauder basis expansion of f then $\sum_{j=1}^n \sum_{k=1}^j a_k P_{jk}$ converges to f in the $F(D)$ norm.

Let $\delta > 0$ be given. Choose N_1 so that

$$\sup_{n \geq N_1} \left\| \sum_{j=1}^n \sum_{k=1}^j a_k P_{jk} - f \right\|_D < \frac{\delta}{3}$$

Setting $a = \sup_k |a_k|$, choose $N_2 > N_1$ so that $a \cdot \varepsilon_n < \delta/3$ for all $n > N_2$. By virtue of (20), (15) and the definition of D we obtain

$$\left\| \sum_{j=1}^n \sum_{k=1}^j a_k P_{jk} - \sum_{k=1}^n a_k \phi_k \right\|_D \leq \left\| \sum_{k=1}^n \left(\sum_{j=1}^n P_{jk} - \phi_k \right) \right\|_D$$

$$\leq n \cdot a \cdot \varepsilon_n < \frac{\delta}{3}.$$

Last, choose $N_3 > N_2$ so that

$$|2 \cdot a_n| < \frac{\delta}{3} \quad \text{whenever } n > N_3.$$

By virtue of (23) and (24) we obtain

$$\left\| \sum_{j=1}^n \sum_{k=1}^j a_k P_{jk} - f \right\|_D < \frac{2\delta}{3}, \quad \text{for all } n > N_3.$$

Obviously

$$\left\| \sum_{j=1}^n \sum_{k=1}^j a_k P_{jk} + \sum_{k=1}^{n+1} a_k P_{n+1 k} - f \right\|_D < \frac{2\delta}{3}, \quad \text{for all } n > N_3.$$

If we add in only part of the second sum; that is,

$$\sum_{k=1}^m a_k P_{n+1 k} \quad \text{with } m < n + 1$$
then it is easy to see from (20) that the basis elements \(\phi_i, i=1, 2, \cdots, m, \) will be approximated better than before, by \(\epsilon_{n+1}/(n+1) \) instead of \(\epsilon_n/n. \) Hence via the calculations in (24), and by (26) it is immediate that

\[
\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} + \sum_{k=1}^{m} a_k P_{n+1k} - f \right\|_D < \frac{2\delta}{3}.
\]

Finally, if we add to the summations in (28) only part of the \(\Phi \)-polynomial \(a_{m+1} P_{n+1m+1}, \) let us say

\[
\sum_{j=\nu(n+1,m)+1}^{s} a_{m+1} b_j \phi_j \quad \text{where } \nu(n+1,m) < s < \nu(n+1,m+1)
\]

then (22) and (25) in addition to (28) give us

\[
\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} + \sum_{k=1}^{m} a_k P_{n+1k} + \sum_{j=\nu(n+1,m)+1}^{s} a_{n+1} b_j \phi_j - f \right\|_D < \delta.
\]

Thus, we obtain the desired series convergence. Furthermore, the coefficients of \(\phi_j \) go to zero, since the \(a_n \) are bounded by \(a \) and the \(b_j \) go to zero.

Bibliography

Department of Mathematics, University of South Florida, Tampa, Florida 33620