THE APPROXIMATION OF ONE-ONE MEASURABLE
TRANSFORMATIONS BY MEASURE PRESERVING
HOMEOMORPHISMS

H. E. WHITE, JR.

Abstract. This paper contains two results related to the material in [2]. Suppose \(f \) is a one-one transformation of the open unit interval \(I^n \) (where \(n \geq 2 \)) onto \(I^n \). 1. If \(f \) is absolutely measurable and \(\varepsilon > 0 \), then there is an absolutely measurable homeomorphism \(\varphi_\varepsilon \) of \(I^n \) onto \(I^n \) such that \(m(\{x: f(x) \neq \varphi_\varepsilon(x) \}) < \varepsilon \), where \(m \) denotes \(n \)-dimensional Lebesgue measure. 2. Suppose \(\mu \) is either (1) a nonatomic, finite Borel measure on \(I^n \) such that \(\mu(G) > 0 \) for every nonempty open subset \(G \) of \(I^n \), or (2) the completion of a measure of type (1). If \(f \) is \(\mu \)-measure preserving and \(\varepsilon > 0 \), then there is a \(\mu \)-measure preserving homeomorphism \(\varphi_\varepsilon \) of \(I^n \) onto \(I^n \) such that \(\mu(\{x: f(x) \neq \varphi_\varepsilon(x)\}) < \varepsilon \).

1. For any subset \(S \) of \(n \)-dimensional Euclidean space \(\mathbb{R}^n \), denote by \(\mathcal{M}(S) \) the set of all measures \(\mu \) such that \(\mu \) is either (1) a nonatomic, finite, Borel measure on \(S \) such that \(\mu(G) > 0 \) for every nonempty open subset \(G \) of \(S \), or (2) the completion of a measure of type (1). If, for \(i = 1, 2, S_i \) is a subset of \(R^n \) and \(\mu_i \in \mathcal{M}(S_i) \), and \(f \) is a one-one transformation of \(S_1 \) onto \(S_2 \), then we say that \(f \) carries \(\mu_1 \) into \(\mu_2 \) provided \(f(D(\mu_1)) = D(\mu_2) \) and \(\mu_2(f[A]) = \mu_1(A) \) for every \(A \) in \(D(\mu_1) \), where \(D(\mu_i) \) is the domain of \(\mu_i \). If \(S_1 = S_2 \) and \(\mu_1 = \mu_2 \), then we say that \(f \) is \(\mu \)-measure preserving.

In this note, we show how a minor modification of the proof of Theorem 5 of [2] yields the following result.

Theorem 1. Suppose \(\mu_1, \mu_2 \in \mathcal{M}(I^n) \), where \(n \geq 2 \) and \(I^n \) denotes the open unit interval in \(\mathbb{R}^n \), and \(f \) is a one-one transformation of \(I^n \) onto \(I^n \) which carries \(\mu_1 \) into \(\mu_2 \). For every \(\varepsilon > 0 \), there is a homeomorphism \(\varphi_\varepsilon \) of \(I^n \) onto \(I^n \) which carries \(\mu_1 \) into \(\mu_2 \) such that

\[
\mu_2(\{x: f(x) \neq \varphi_\varepsilon(x)\}) = \mu_1(\{x: f^{-1}(x) \neq \varphi_\varepsilon^{-1}(x)\}) < \varepsilon.
\]

Presented to the Society, July 31, 1972; received by the editors July 6, 1973.
Key words and phrases. Absolutely measurable transformation, measure preserving transformation, homeomorphism.

© American Mathematical Society 1974
REMARKS. The author has been informed recently by J. C. Oxtoby that he has, in his paper *Approximation by measure-preserving homeomorphisms*, generalized Theorem 1 (with $\mu_1=\mu_2$). In doing so, he re-proved this statement. His work was done independently and was done after the work in this paper.

A one-one transformation f of I^n onto I^n is called absolutely measurable [2] if $f[A]$ and $f^{-1}[A]$ are Lebesgue measurable for every Lebesgue measurable subset A of I^n.

We then obtain the following result as a corollary to Theorem 1.

Theorem 2. If f is an absolutely measurable, one-one transformation of I^n onto I^n (where $n \geq 2$) and $\varepsilon > 0$, then there is an absolutely measurable homeomorphism φ_ε of I^n onto I^n such that

$$m(\{x : f(x) \neq \varphi_\varepsilon(x) \text{ or } f^{-1}(x) \neq \varphi_\varepsilon^{-1}(x)\}) < \varepsilon,$$

where m denotes n-dimensional Lebesgue measure.

2. In this section n will always denote a fixed integer ≥ 2. By an $(n-1)$-dimensional interval in R^n we mean a set of the form

$$\{(x_1, \cdots, x_n) \in R^n : x_k = c \} \cap \prod \{(a_j, b_j) : j = 1, \cdots, n\},$$

where k is an integer such that $1 \leq k \leq n$, c is a real number, and, for $j=1, \cdots, n$, a_j and b_j are real numbers such that $a_j < b_j$. For any subset A of R^n, we denote the interior of A, the closure of A, and the boundary of A by int A, cl A, and bdry A, respectively.

Definition. A subset P of R^n is called a p-set if P is a combinatorial n-ball (see p. 18 of [1]) and bdry P is the union of a finite number of $(n-1)$-dimensional intervals.

REMARKS. (1) The p-sets used in the proof of Theorem 1 (and Theorem 5 of [2]) can be chosen to be very simple "snake-like" objects.

(2) The author wishes to thank Dr. L. C. Glaser for answering a number of questions concerning Lemma 5 of [2].

The following statement follows from Corollary 3 of [3] and Lemma 5 of [2].

Lemma 1. Suppose, for $i=1, 2$, that \{P(i), j=1, \cdots, r\} is a disjoint family of p-sets contained in the interior of the p-set $P(i)$. For $i=1, 2$, let $Q(i) = P(i) \cap \bigcup \{\text{int } P(i, j) : j=1, \cdots, r\}$, and suppose $\mu_1 \in \mathcal{M}(Q(i))$ and $\mu_2(\text{bdry } Q(i))=0$. If $\mu_1(Q(1))=\mu_2(Q(2))$, then every homeomorphism φ of $\text{bdry } P(1)$ onto $\text{bdry } P(2)$ can be extended to a homeomorphism φ^* of $Q(1)$ onto $Q(2)$ which carries μ_1 into μ_2 such that $\varphi^*[\text{bdry } P(1, j)]=\text{bdry } P(2, j)$ for $j=1, \cdots, r$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The following statement follows easily from the definition of sectionally zero dimensional set [2, p. 263].

Lemma 2. Suppose K is a sectionally zero dimensional, compact set contained in the interior of the p-set P such that $m(K) < \gamma < m(P)$. Then there is a p-set Q such that $K \subset \text{int } Q$, $Q \subset \text{int } P$, and $m(Q) = \gamma$.

Lemma 3. Suppose P, Q are p-sets contained in I^n, and S and T are compact, sectionally zero dimensional sets contained in $\text{int } P$ and $\text{int } Q$, respectively. If φ is an m-measure preserving homeomorphism of S onto T and $m(P) = m(Q)$, then φ can be extended to an m-measure preserving homeomorphism of P onto Q.

We obtain a proof of Lemma 3 by making the following modifications in the proof of Theorem 1 of [2]. At the kth step of the definition of the auxiliary sets, since $m(S_{j_1,\ldots,j_k}) = m(T_{j_1,\ldots,j_k})$ for $j_1 \leq m_1, \ldots, j_k \leq m_1, \ldots, j_k$, by Lemma 2, the p-sets P_{j_1,\ldots,j_k}, Q_{j_1,\ldots,j_k} can be chosen so that $m(P_{j_1,\ldots,j_k}) = m(Q_{j_1,\ldots,j_k})$ for $j_1 \leq m_1, \ldots, j_k \leq m_1, \ldots, j_k$. Then, at the kth step in defining the extension of φ, instead of Lemma 5 of [2], we use Lemma 1.

Remark. In proving Theorem 1 of [2], C. Goffman uses Lemma 4 of [2]. Lemma 4 of [2] is false. However, if the following sentence is added to the hypothesis of Lemma 4, then the resulting lemma is true. For each i, there is an interval J_i such that $F_i \subset \text{int } J_i$ and $J_i \subset P$. The modified version of Lemma 4 of [2] is sufficient for the proof of Lemma 3 (and Theorem 1 of [2]).

Proof of Theorem 1. If $\mu_1 = \mu_2 = m$, Theorem 1 follows from Lemma 3 in exactly the same way as Theorem 5 of [2] follows from Theorem 1 of [2]. Now, suppose μ_1, μ_2 are arbitrary elements of $M(I^n)$ and f is as hypothesized. First, note that either both μ_1 and μ_2 are of type (1) or both μ_1 and μ_2 are of type (2). Hence, we may assume that both μ_1 and μ_2 are of type (2) and that $\mu_1(I^n) = 1$. By Theorem 2 of [3], there are homeomorphisms ψ and φ of cI^n onto cI^n such that ψ carries m into μ_1 and φ carries μ_2 to m. Then $f^* = \varphi \circ f \circ \psi$ is m-measure preserving. If θ is an m-measure preserving homeomorphism of I^n onto I^n such that $m(\{x : f^*(x) \neq \theta(x)\}) < \epsilon$, then $\varphi_\epsilon = \varphi^{-1} \circ \theta \circ \psi^{-1}$ is the required homeomorphism.

Proof of Theorem 2. Suppose f is as hypothesized. For any Lebesgue measurable subset A of I^n, let $\mu(A) = m(f^{-1}[A])$. Then $\mu \in M(I^n)$ and f carries m into μ. Let $\delta > 0$ be such that $\delta \leq \epsilon$ and, if $m(A) < \delta$, then $\mu(A) < \epsilon$. By Theorem 1, there is a homeomorphism φ_ϵ of I^n onto I^n carrying m into μ such that $m(\{x : f(x) \neq \varphi_\epsilon(x)\}) < \delta$. It is clear that φ_ϵ is the required homeomorphism.
Remarks. In proving Theorem 1 with \(\mu_1 = \mu_2 \), J. C. Oxtoby showed that \(\varphi_x \) could be chosen to be a homeomorphism of \(\text{cl } I^n \) onto \(\text{cl } I^n \) such that \(\varphi_x \) is equal to the identity outside of some closed interval contained in \(I^n \). It is clear that (a) the proof of Theorem 1 given here yields this, too, and (b) the \(\varphi_x \) in Theorem 2 may be chosen to have these properties. Furthermore, in Theorem 1, \(\varphi_x \) can be chosen to be a homeomorphism of \(\text{cl } I^n \) onto \(\text{cl } I^n \) which is equal to the identity on \(\text{bdry } I^n \).

References

251 N. Blackburn Road, Rt. #5, Athens, Ohio 45701