n-NORMAL LATTICES

WILLIAM H. CORNISH

ABSTRACT. An n-normal lattice is a distributive lattice with 0 such that each prime ideal contains at most n minimal prime ideals. A relatively n-normal lattice is a distributive lattice such that each bounded closed interval is an n-normal lattice.

The main results of this paper are:

1. Introduction. Grätzer and Schmidt characterized a Stone lattice as a distributive pseudocomplemented lattice in which each prime ideal contains a unique minimal prime ideal; a detailed discussion of their theorem is given in [1]. Motivated by this characterization of Stone lattices, the author studied distributive lattices with 0 in which each prime ideal contains a unique minimal prime ideal under the name “normal lattices”.

Recently K. B. Lee [4] determined all the varieties of distributive pseudocomplemented lattices. He also generalized Grätzer and Schmidt’s theorem by proving that for $1 \leq n < \omega$ the nth variety consists of all lattices such that each prime ideal contains at most n minimal prime ideals.

Thus in this paper we characterize “n-normal lattices” by means of a first-order sentence and then go on to generalize some of the results of [1].

Throughout this paper all lattices are distributive and all prime ideals are proper.

2. Preliminaries. In this section we present the preliminary results on which our main theorems hinge.

Lemma 2.1. Let P be a prime ideal in a lattice L with 0. Then $O(P) =$
\(\{ x \in L : x \land y = 0 \text{ for some } y \in L \setminus \mathcal{P} \} \) is the intersection of all the minimal prime ideals of \(L \) which are contained in \(\mathcal{P} \).

Proof. See [1, Proposition 2.2]. \(\square \)

Lemma 2.2. If \(L_1 \) is a sublattice of a lattice \(L \) and \(\mathcal{P} \) is a prime ideal in \(L_1 \) then there exists a prime ideal \(\mathcal{P} \) in \(L \) such that \(\mathcal{P} = L_1 \cap \mathcal{P} \).

Proof. This result is well known. For an explicit proof see [1, Lemma 3.4]. \(\square \)

The final lemma is crucial to this paper; it was suggested by a recent result of Hindman [3, Theorem 1.8].

Lemma 2.3. Let \(\mathcal{J} \) be an ideal in a lattice \(L \). For a given positive integer \(n \geq 2 \), the following conditions are equivalent:

(i) for any \(x_1, x_2, \ldots, x_n \in L \) which are "pairwise in \(\mathcal{J} \)," i.e. \(x_i \land x_j \in \mathcal{J} \) for any \(i \neq j \), there exists \(k \) such that \(x_k \in \mathcal{J} \),
(ii) for any ideals \(\mathcal{J}_1, \mathcal{J}_2, \ldots, \mathcal{J}_n \) in \(L \) such that \(\mathcal{J}_1 \cap \mathcal{J}_2 \subseteq \mathcal{J} \) for any \(i \neq j \), there exists \(k \) such that \(\mathcal{J}_k \subseteq \mathcal{J} \),
(iii) \(\mathcal{J} \) is the intersection of at most \(n - 1 \) distinct prime ideals.

Proof. (i) and (ii) are easily seen to be equivalent.

(iii) \(\Rightarrow \) (i). Suppose \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k \) are \(k \) (\(1 \leq k \leq n - 1 \)) distinct prime ideals such that \(\mathcal{J} = \mathcal{P}_1 \cap \mathcal{P}_2 \cap \cdots \cap \mathcal{P}_k \).

Let \(x_1, x_2, \ldots, x_n \) be elements of \(L \) such that \(x_i \land x_j \in \mathcal{J} \) for all \(i \neq j \). Suppose no element \(x_i \) is a member of \(\mathcal{J} \). Then, for each \(r \) (\(1 \leq r \leq k \)) there is at most one \(i \) (\(1 \leq i \leq n \)) such that \(x_i \notin \mathcal{P}_r \). Since \(k < n \) there is some \(i \) such that \(x_i \in \mathcal{P}_1 \cap \mathcal{P}_2 \cap \cdots \cap \mathcal{P}_k \).

(i) \(\Rightarrow \) (iii). Let \(\mathcal{J} \) be an ideal which satisfies condition (i). If \(\mathcal{J} \) is a prime ideal, i.e. condition (i) actually holds when \(n = 2 \), then (iii) is trivially true. Thus we may assume that there is a largest integer \(m < n \) such that condition (i) does not hold for \(\mathcal{J} \) (consequently condition (i) holds for \(m + 1, m + 2, \ldots, n \)). For some \(m < n \) we may suppose that there exist elements \(a_1, a_2, \ldots, a_m \in L \) such that \(a_i \land a_j \in \mathcal{J} \) for \(i \neq j \), \(i = 1, \ldots, m \), \(j = 1, \ldots, m \), yet \(a_1, a_2, \ldots, a_m \notin \mathcal{J} \).

As \(L \) is a distributive lattice \(\mathcal{J} : a_i = \{ x \in L : x \land a_i \in \mathcal{J} \} \) is an ideal for any \(i \in \{ 1, \ldots, m \} \). Each \(\mathcal{J} : a_i \) is in fact a prime ideal. Firstly \(\mathcal{J} : a_i \neq L \) since \(a_i \notin \mathcal{J} \). Secondly, suppose that \(b \) and \(c \) are in \(L \) and \(b \land c \in \mathcal{J} : a_i \). Consider the set of \(m + 1 \) elements \(\{ a_1, a_2, \ldots, a_{i-1}, b \land a_i, c \land a_i, a_i, \ldots, a_m \} \). This set is pairwise in \(\mathcal{J} \) and so, either \(b \land a_i \in \mathcal{J} \)}
or \(c \land a_i \in J \) since condition (i) holds for \(m + 1 \). That is, \(b \in J: a_i \) or \(c \in J: a_i \) and \(J: a_i \) is prime.

Clearly \(J \subseteq \bigcap_{1 \leq i \leq m} J: a_i \). If \(w \in \bigcap_{1 \leq i \leq m} J: a_i \) then \(w, a_1, \ldots, a_m \) are pairwise in \(J \) and so \(w \in J \). Hence \(J = \bigcap_{1 \leq i \leq m} J: a_i \) is the intersection of \(m < n \) prime ideals. \(\Box \)

Definition 2.4. An ideal \(J \neq L \) satisfying any of the equivalent conditions of Lemma 2.3 for some positive integer \(n \geq 2 \) is called an \(n \)-prime ideal.

Thus an ideal is a prime ideal if and only if it is a 2-prime ideal. It should also be noted that if \(2 \leq n \leq m \) then any \(n \)-prime ideal is also an \(m \)-prime ideal.

3. Main theorems.

Definitions. 3.1. Let \(L \) be a lattice with 0. Then \(L \) is called \(n \)-normal for \(n \geq 1 \) if each prime ideal in \(L \) contains at most \(n \) minimal prime ideals.

3.2. Let \(L \) be a lattice with 0. Then \(L \) is called sectionally \(n \)-normal for \(n \geq 1 \) if each initial segment \([0, x], x \in L\), is an \(n \)-normal lattice.

3.3. Let \(L \) be a lattice. Then \(L \) is called relatively \(n \)-normal for \(n \geq 1 \) if each closed interval \([x, y], x \leq y, x, y \in L\), is an \(n \)-normal lattice.

Under the name of normal (resp. relatively normal), \(1 \)-normal (resp. relatively \(1 \)-normal) lattices have been extensively studied by the author in a previous paper [1]. We now extend some of the fundamental results of that paper to the case of any positive integer, \(n \) say.

Theorem 3.4. Let \(L \) be a lattice with 0 and let \(n \) be a positive integer. The following conditions are equivalent:

(i) \(L \) is \(n \)-normal,

(ii) for each prime ideal \(P \), \(O(P) \) is \((n + 1)\)-prime,

(iii) for any \(n + 1 \) distinct minimal prime ideals \(M_0, M_1, \ldots, M_n \),

\[
M_0 \lor M_1 \lor \cdots \lor M_n = L,
\]

(iv) for any \(x_0, x_1, \ldots, x_n \in L \) such that \(x_i \land x_j = 0 \) for \(i \neq j, i = 0, \ldots, n, j = 0, \ldots, n \),

\[
(x_0)^* \lor (x_1)^* \lor \cdots \lor (x_n)^* = L.
\]

Proof. (i) and (iii) are equivalent since each proper ideal in a distributive lattice is contained in some prime ideal.

(i) \(\Rightarrow \) (ii). This follows immediately from Lemmas 2.1 and 2.3.
(ii) \Rightarrow (iv). Suppose that x_0, x_1, \ldots, x_n are $n+1$ elements of L such that $x_i \land x_j = 0$ for $i \neq j$. Suppose that $(x_0)^* \lor \cdots \lor (x_n)^* \notin L$. Then there is a prime ideal P such that $(x_0)^* \lor \cdots \lor (x_n)^* \subseteq P$. Hence, $x_0, x_1, \ldots, x_n \in L \setminus O(P)$. But this contradicts (ii) since $x_i \land x_j = 0 \in O(P)$ for all $i \neq j$. Thus (ii) does imply (iv).

(ii) \Rightarrow (i). By Lemma 2.3, (ii) implies that $O(P) = P_1 \cap \cdots \cap P_k$ for some $k \leq n$ distinct prime ideals P_1, \ldots, P_k. Let Q be a minimal prime ideal contained in P. By Lemma 2.1, $O(P) \subseteq Q$ so that $P_i \subseteq Q$ for some i ($1 \leq i \leq k$). As Q is minimal $Q = P_i$ and so there are at most k, and hence at most n, minimal prime ideals contained in P.

(iv) \Rightarrow (ii). Suppose a_0, a_1, \ldots, a_n are $n+1$ elements of L which are pairwise in $O(P)$. Then, for any $i \neq j$, $a_i \land a_j \land y_{ij} = 0$ for some $y_{ij} \in L \setminus P$. Put $b_i = a_i \land y_{i1} \land y_{i2} \land \cdots \land y_{ii-1} \land y_{ii+1} \land \cdots \land y_{in}$ for each $i = 0, 1, \ldots, n$. For distinct i and j, $b_i \land b_j = 0$. By (iv) $(b_0)^* \lor \cdots \lor (b_n)^* = L$. Hence $(b_k)^* \not\subseteq P$ for some $k = 0, \ldots, n$. Thus $b_k \in O(P)$. That is, $a_k \land y_{k1} \land \cdots \land y_{kk-1} \land y_{kk+1} \land \cdots \land y_{kn} \land x = b_k \land x = 0$ for some $x \in L \setminus P$. But $y_{k1}, \ldots, y_{kk-1}, y_{kk+1}, \ldots, y_{kn}$ are not in P and so $a_k \in O(P)$. □

Corollary 3.5. For any $n+1$ elements x_0, x_1, \ldots, x_n in an n-normal lattice L

$$(x_0 \land \cdots \land x_n)^* = \lor_{0 \leq i \leq n} (x_0 \land \cdots \land x_{i-1} \land x_{i+1} \land \cdots \land x_n)^*.$$\n
Proof. Let $b_i = x_0 \land \cdots \land x_{i-1} \land x_{i+1} \land \cdots \land x_n$ for each $0 \leq i \leq n$. Suppose that $x \in (x_0 \land \cdots \land x_n)^*$. Then $x \land x_0 \land \cdots \land x_n = 0$ so that, for $i \neq j$, $(x \land b_i) \land (x \land b_j) = 0$. From the previous theorem, $x \in (x \land b_0)^* \lor \cdots \lor (x \land b_n)^*$ so that $x = a_0 \lor \cdots \lor a_n$ for some $a_i \in L$ such that $a_i \land x \land b_i = 0$. Then $x = (a_0 \land x) \lor \cdots \lor (a_n \land x)$ and $a_i \land x \in (b_i)^*$ and so

$$(x_0 \land \cdots \land x_n)^* \subseteq \lor_{0 \leq i \leq n} (x_0 \land \cdots \land x_{i-1} \land x_{i+1} \land \cdots \land x_n)^*.$$\n
The reverse inclusion is trivial. □

Remark. Grätzer and Lakser (see [2, Lemma 2, p. 167]) have shown that condition (iv) of Theorem 3.4 is equivalent to Lee's condition which characterizes the nth variety, for $0 < n < \omega$, of distributive pseudocomplemented lattices. Thus, Theorem 3.4 should be compared with Lee's Theorem 2 of [4].
Theorem 3.6. The following conditions are equivalent for a lattice L with 0:

(i) L is sectionally n-normal,
(ii) L is n-normal,
(iii) each ideal J in L is an n-normal sublattice.

Proof. (iii) \Rightarrow (i) is trivial.

(ii) \Rightarrow (iii). Let J be an ideal in L and suppose $x_0, x_1, \ldots, x_n \in J$ are such that $x_i \wedge x_j = 0$ for all $i \neq j$. Let $(x_i)^+ = \{y \in J : y \wedge x_i = 0\}$. Note that $(x_i)^+ = (x_i)^+ \cap J$. By Theorem 3.4, $(x_0)^+ \vee \ldots \vee (x_n)^+ = L$ and so $J = J \cap L = (J \cap (x_0)^+) \vee \ldots \vee (J \cap (x_n)^+) = (x_0)^+ \vee \ldots \vee (x_n)^+$, since the lattice of ideals of a distributive lattice is distributive.

(i) \Rightarrow (ii). Suppose that (i) holds and $x_0, x_1, \ldots, x_n \in L$ are such that $x_i \wedge x_j = 0$ for all $i \neq j$. Let $w \in L$ be arbitrary. Then $w, x_0, x_1, \ldots, x_n \in [0, w \vee x_0 \vee \ldots \vee x_n] = L$. As L is n-normal, $w \in (x_0)^+ \vee \ldots \vee (x_n)^+$ where $(x_i)^+ = \{y \in L : y \wedge x_i = 0\}$. Hence $w \in (x_0)^+ \vee \ldots \vee (x_n)^+$, i.e. $L = (x_0)^+ \vee \ldots \vee (x_n)^+$.

Theorem 3.7. Let L be a lattice and let n be a positive integer. The following conditions are equivalent:

(i) L is relatively n-normal,
(ii) there is no homomorphism from L onto B_{n+1}, where B_{n+1} is the lattice obtained by adding a new largest element to the Boolean algebra B_n of subsets of $\{0, 1, 2, \ldots, n\}$,
(iii) for any $n+1$ pairwise incomparable prime ideals P_0, P_1, \ldots, P_n,

\[P_0 \vee P_1 \vee \ldots \vee P_n = L. \]

Proof. (i) \Rightarrow (ii). Suppose there is a homomorphism f from L onto B_{n+1}. Let $a \in f^*(1)$. For each k in $\{0, 1, \ldots, n\}$ let $x_k \in f^*(\{0, k-1, k+1, \ldots, n\})$. Consider $l = \{x_0 \wedge \ldots \wedge x_n, x_0 \vee \ldots \vee x_n \vee a\}$. For each i in $\{0, 1, \ldots, n\}$ let $b_i = x_0 \wedge \ldots \wedge x_{i-1} \wedge x_{i+1} \wedge \ldots \wedge x_n$. Then, if $i \neq j$, $b_i \wedge b_j = x_0 \wedge \ldots \wedge x_n$, the zero element of L. By Theorem 3.4, since $a \leq x_0 \vee \ldots \vee x_n \vee a$, (i) implies that $a \leq y_0 \vee \ldots \vee y_n$ for some $\{y_0, \ldots, y_n\} \subseteq l$ such that $y_i \wedge b_i = x_0 \wedge \ldots \wedge x_n$ for each i.

But $f(x_0 \wedge \ldots \wedge x_n) = \emptyset$ so, for each i, $f(y_i) \wedge f(b_i) = \emptyset$ while $f(b_i) = \{i\}$. Thus, for each i, $f(y_i) \in B_{n+1}$, so $f(a) \in B_{n+1}$, a contradiction.

(ii) \Rightarrow (iii). Suppose that (iii) does not hold. Let P_0, \ldots, P_n be
Let P be any prime ideal such that $P_0 \lor \cdots \lor P_n \subseteq P$. Define f mapping L to B_{n+1} by the rule $f(x) = \{x \in \{0, 1, \ldots, n\}: x \notin P_k\}$ if $x \in P$, and $f(x) = 1$ if $x \notin P$. It is easily checked that f is a homomorphism. That $f^*(1), f^*(\emptyset)$, and $f^*(\{0, 1, \ldots, n\})$ are nonempty is clear. Let F be a proper nonempty subset of $\{0, 1, \ldots, n\}$. For each pair of distinct elements i and j of $\{0, 1, \ldots, n\}$ let $x_{ij} \in P_i \setminus P_j$ and let $x = \bigwedge_{i \in F} (\bigvee_{j \in F \setminus \{i\}} x_{ij})$. Then $f(x) = F$. Consequently f is onto B_{n+1} and (iii) fails to hold.

(iii) \Rightarrow (i). Let $I = [x, y]$ be an interval in L and suppose that M_0, M_1, \ldots, M_n are $n+1$ distinct minimal prime ideals in I. By Lemma 2.2 there are prime ideals P_0, P_1, \ldots, P_n in L such that $M_i = I \cap P_i$ for all $i = 0, \ldots, n$. Clearly the P_i are pairwise incomparable and so (ii) implies that $P_0 \lor \cdots \lor P_n = L$.

Let $a \in I$. Then $a = c_0 \lor \cdots \lor c_n$ for suitable $c_i \in P_i$. Now $c_i \leq a \leq y$ so that $c_i \lor x \in I$ for all i. As $x \in M_i$, $x \in P_i$ for each i and hence $c_i \lor x \in I \cap P_i = M_i$. Then $a = a \lor x = (c_0 \lor x) \lor \cdots \lor (c_n \lor x) \in M_0 \lor \cdots \lor M_n$ and so $M_0 \lor \cdots \lor M_n = L$. Theorem 3.4 now shows that (i) holds. Of course, if L has a smallest element and is relatively n-normal then L is n-normal. The following result demonstrates the failure of the converse.

Theorem 3.8. For each n ($0 < n < \omega$), there exists a lattice which is 1-normal (and hence n-normal) but is not relatively n-normal.

Proof. Let n be given. Let L be the sublattice of the power set of $\{0, 1, \ldots, n+3\}$ which is generated by the sets $\{0, 1\}, \{0, 2\}, \ldots, \{0, n+1\}, \{0, 1, 2, \ldots, n+1, n+2\}$ and $\{n+3\}$. Then the interval $[\{0\}, \{0, 1, 2, \ldots, n+1, n+2\}]$ is not n-normal since it is isomorphic to B_{n+1}. Therefore L is not relatively n-normal.

The only minimal prime ideals in L are $\{n+3\}$ and $\{0, 1, \ldots, n+2\}$ and they are comaximal. Thus L is 1-normal.

Acknowledgements. The author would like to thank Professor Hindman for sending him a preprint of [3].

The referee is responsible for Theorem 3.8 and many improvements in the paper for which the author is most grateful.

Rod Beazer (Glasgow) and Brian Davey (Manitoba) have each independently obtained a version of Theorem 3.4. Davey has also obtained Theorem 3.7.
REFERENCES

SCHOOL OF MATHEMATICAL SCIENCES, FLINDERS UNIVERSITY OF SOUTH AUSTRALIA, BEDFORD PARK, SOUTH AUSTRALIA 5042