Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The spectrum of the Laplacian for $ 1$-forms


Author: Shûkichi Tanno
Journal: Proc. Amer. Math. Soc. 45 (1974), 125-129
MSC: Primary 58G15; Secondary 53C20
DOI: https://doi.org/10.1090/S0002-9939-1974-0343321-8
MathSciNet review: 0343321
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (M,g)$ and $ (M',g')$ be compact orientable Riemannian manifolds with the same spectrum of the Laplacian for $ 1$-forms. We prove that, for $ \dim M = 2,3,16,17, \cdots ,93,(M,g)$ is of constant curvature if and only if $ (M',g')$ is so.


References [Enhancements On Off] (What's this?)

  • [1] M. Berger, Le spectre des variétés riemanniennes, Rev. Roumaine Math. Pures Appl. 13 (1968), 915-931. MR 39 #892. MR 0239535 (39:892)
  • [2] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., vol. 194, Springer-Verlag, Berlin and New York, 1971. MR 43 #8025. MR 0282313 (43:8025)
  • [3] M. P. Gaffney, Asymptotic distributions associated with the Laplacian for forms, Comm. Pure Appl. Math. 11(1958), 535-545. MR 20 #5980. MR 0099541 (20:5980)
  • [4] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5(1971), 233-249, MR 45 # 1201. MR 0292114 (45:1201)
  • [5] -, Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34(1970), 269-285. MR 0488181 (58:7744)
  • [6] S. Tanno, An equality for $ A$-dimensional Kählerian manifolds, Proc. Japan Acad. 49(1973), 257-261. MR 0372796 (51:9002)
  • [7] -, Eigenvalues of the Laplacian of Riemannian manifolds, Tôhoku Math. J. 25(1973), 391-403. MR 0334086 (48:12405)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G15, 53C20

Retrieve articles in all journals with MSC: 58G15, 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0343321-8
Keywords: Spectrum, Laplacian, constant curvature, Weyl conformal curvature tensor, Bochner curvature tensor
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society