ON A SUBCLASS OF BAZILEVIĆ FUNCTIONS

P. J. EENIGENBURG, S. S. MILLER,
P. T. MOCANU AND M. O. READE

ABSTRACT. The authors show that certain Bazilević functions are spiral-like. Then the authors study the growth and Hardy classes of those special functions.

Introduction. I. E. Bazilević [2] gave an explicit construction for a class of functions analytic and univalent in the unit disc D (see also [10]). His result was as follows.

Theorem 1. Let g be univalent starlike in D with $g(0) = 0$, and let h be analytic and satisfy $\text{Re}(e^{i\lambda}h(z)) > 0$ in D for some real λ. Then if $a > 0$ and β is real, the function

$$f(z) = \left\{ \int_0^z g^a(\zeta)h(\zeta)\zeta^i\beta-1 d\zeta \right\}^{1/(a+i\beta)}$$

is analytic and univalent in D.

In this paper we consider the functions f that arise from (1) when $h(z) \equiv 1$. Such a function f must satisfy

$$\text{Re}\left[1 + z/f''(z)/f'(z) + (a - 1 + i\beta)zf'(z)/f(z) \right] > 0, \quad z \in D.$$

Conversely, if f is analytic in D, with $f(0) = 0$, $f(z)f'(z)/z \not\equiv 0$ ($z \in D$), and if f satisfies (2) for some $a > 0$, β real, then f can be written in the form (1), with $h(z) \equiv 1$. Let us denote the class of such functions f by $B(a + i\beta)$. The class obtained when $\beta = 0$ has been studied extensively [5], [6], [7], [8], [9]. The class $B(1 + i\beta)$ has recently been considered by H. Yoshikawa [12]; he showed that if $f \in B(1 + i\beta)$ then f is γ-spiral-like, where $\gamma = \text{arc tan} \beta$. We generalize this to

Received by the editors December 5, 1972.

Key words and phrases. Bazilević function, univalent, Hardy class, spiral-like, growth.

This author acknowledges support received from the National Science Foundation via NSF Grant GP 28115.
Theorem 2. If $f \in B(\alpha + i\beta)$ then f is γ-spiral-like, where γ satisfies
\[\alpha + i\beta = (\alpha^2 + \beta^2)^{1/2} e^{i\gamma}, \quad -\pi/2 < \gamma < \pi/2. \]

Proof. Define a function w analytic in D by
\[e^{i\gamma} \frac{zf'(z)}{f(z)} = \cos \gamma \left(\frac{1 + w(z)}{1 - w(z)} \right) + i \sin \gamma, \quad z \in D. \]

One easily checks that $w(0) = 0$, $w(z) \neq \pm 1$ ($z \in D$). It suffices to show $|w(z)| < 1$ for $z \in D$. Let $w(z) = R(z)e^{i\phi(z)}$ for $z = re^{i\theta}$ and suppose that $z_0 = r_0e^{i\theta_0}$ is a point of D such that
\[\max_{|z| \leq r_0} |w(z)| = |w(z_0)| = 1. \]

Then $(\partial R/\partial \theta)|_{z=z_0} = 0$, and since
\[\frac{zw'(z)}{w(z)} = \frac{\partial \phi}{\partial \theta} - i \frac{1}{R} \frac{\partial R}{\partial \theta} \]
we have at the point z_0,
\[z_0w'(z_0)/w(z_0) = (\partial \phi/\partial \theta)|_{z=z_0}. \]

We shall now show that
\[\Re \left[1 + zf''(z)/f'(z) + (\alpha - 1 + i\beta)zf'(z)/f(z) \right]_{z=z_0} = 0 \]
thus contradicting the assertion $f \in B(\alpha + i\beta)$. By (3), (4) can be written as
\[\Re \left[\frac{zP'(z)}{P(z) + i \tan \gamma} + (\alpha^2 + \beta^2)^{1/2} (\cos \gamma P(z) + i \sin \gamma) \right]_{z=z_0} = 0 \]
where $P(z) = (1 + w(z))/(1 - w(z))$. Since $|w(z_0)| = 1$ and since $[z_0w'(z_0)/w(z_0)]$ is real, it follows that $P(z_0)$ is imaginary and $z_0P'(z_0)$ is real. Hence (5) holds at z_0. This completes the proof.

Theorem 3. If $\alpha' + i\beta' = t(\alpha + i\beta)$, $t \geq 1$, then $B(\alpha + i\beta) \subset B(\alpha' + i\beta')$.

Proof. Since f is γ-spiral-like ($\alpha + i\beta = (\alpha^2 + \beta^2)^{1/2} e^{i\gamma}$),
\[\Re \left[(t - 1)(\alpha^2 + \beta^2)^{1/2} e^{i\gamma} zf'(z)/f(z) \right] \geq 0, \quad z \in D. \]

Then
\[\Re \left[1 + zf''(z)/f'(z) + (\alpha' - 1 + i\beta')zf'(z)/f(z) \right] = \Re \left[1 + zf''(z)/f'(z) + (\alpha - 1 + i\beta)zf'(z)/f(z) \right] \]
\[+ \Re \left[(t - 1)(\alpha^2 + \beta^2)^{1/2} e^{i\gamma} zf'(z)/f(z) \right] \geq 0, \quad z \in D. \]
In the integral representation for functions in $B(\alpha + i\beta)$, namely,

$$f(z) = \left\{ \int_0^z g(\zeta)\zeta^{i\beta - 1} \, d\zeta \right\}^{1/(\alpha + i\beta)} ,$$

let us denote by $f_{\alpha+i\beta}$ the function obtained by letting g be the Koebe function $z/(1-z)^2$. The following theorem illustrates the dependence of the growth of f on the parameters α and β.

Theorem 4. Suppose $f \in B(\alpha + i\beta)$.

(A) If $0 < \alpha \leq \frac{1}{2}$, then, unless f is a rotation or magnification of $f_{1/2+i\beta}$, f is bounded.

(B) If $\alpha > \frac{1}{2}$ and f is not a rotation or magnification of $f_{\alpha+i\beta}$, then there exists $\epsilon = \epsilon(f) > 0$ such that $f \in H^{\lambda+\epsilon}$ and $f' \in H^{(1+\lambda)\epsilon}$, where $\lambda = (\alpha^2 + \beta^2)/(2\alpha - 1)$.

(C) For $\alpha > \frac{1}{2}$ the function $f_{\alpha+i\beta}$ belongs to H^p, $\forall p < \lambda$, but does not belong to H^λ.

Proof. Following Sheil-Small’s construction [11] of f in “analytic stages” from the representation (6), we set

$$F(z) = \left(\frac{g(z)}{z} \right)^{\alpha} = \sum_{n=0}^{\infty} C_n z^n,$$

for a suitable branch of the nonvanishing function $(g(z)/z)^\alpha$. Let

$$G(z) = \sum_{n=0}^{\infty} \frac{C_n}{n + \alpha + i\beta} z^n,$$

so that G is analytic in D and satisfies the differential equation

$$(\alpha + i\beta)G(z) + zG'(z) = F(z).$$

Sheil-Small [11] shows that $G(z) \neq 0$ in D. We now define f by the formula

$$f(z) = z[G(z)]^{1/(\alpha + i\beta)}.$$

One can easily verify that apart from a constant factor, this defines an analytic branch of the formula (6). By (9) we may write

$$G(z) = [(f(z)/z)^{1+i\beta/\alpha}]^\alpha = [s(z)/z]^{\alpha},$$

where (10) is the defining equation for s. Since f is γ-spiral-like (Theorem 2), it follows easily that s is starlike in D. From (8) we have

$$zG'(z) = (g(z)/z)^\alpha - (\alpha + i\beta)(s(z)/z)^\alpha.$$

If g is not a rotation of the Koebe function, then there exists $\epsilon = \epsilon(g) > 0$ such that $g \in H^{1/2+\epsilon}$ [4]. Furthermore, it is easy to see from (7) that s cannot be a rotation of the Koebe function. Thus, $G' \in H^{1/(2\alpha)+\epsilon}$, ϵ denoting
a positive number, not necessarily the same in each instance. Hence, if
0 < α ≤ 1/2, G is bounded and so f is bounded, by (9). Whence, (A) is proved.
For α > 1/2, a Hardy-Littlewood theorem [3, p. 88] shows that G ∈ H^{1/(2α−1)+ε}; hence, from (10), s ∈ H^{a/(2α−1)+ε}. From the identity
\[(f(z)/z)^{1+iβ/α} = s(z)/z, \]
we have
\[\left| \frac{f(z)}{z} \right| = \left| \frac{s(z)}{z} \right|^2 \left(\alpha^2 + \beta^2 \right)^{-1/2} \exp \left[\frac{\alpha \beta}{\alpha^2 + \beta^2} \arg \left(\frac{s(z)}{z} \right) \right]. \]
Since s ∈ H^{a/(2α−1)+ε} and the exponential factor is bounded, it follows that
\[f ∈ H^{λ+ε}, \quad λ = \frac{\alpha^2 + \beta^2}{\alpha(2α - 1)}. \]
To complete the proof of (B), we must show the existence of an ε > 0 such that f' ∈ H^{(1+λ)^{-1}+ε}. By Theorem 2, there exists h, Re(h(z)) > 0 in D, such that
\[e^{iγ} z f'(z) = f(z) h(z). \]
Fix ε in (14), and for small positive δ, let
\[k = k(δ) = (λ + ε - δλ + δε)^{-1}. \]
Choosing p = (λ + ε)k^{-1}, q = (1 + δ)^{-1}k^{-1}, and applying Hölder’s inequality to (15) with conjugate indices p and q, it follows that
\[\int_{-π}^{π} |f'(z)|^k dθ ≤ \left(\int_{-π}^{π} \left| \frac{f(z)}{z} \right|^p dθ \right)^{1/p} \left(\int_{-π}^{π} |h(z)|^q dθ \right)^{1/q}. \]
By (14) and the fact that kq < 1, we have that \(\int_{-π}^{π} |f'(z)|^k dθ \) remains bounded as r→1. Hence, the proof of (B) is complete if we show the existence of δ > 0 such that k = k(δ) > λ(1 + λ)^{-1}. But this is easily checked by consideration of (16).
Finally, we leave the verification of (C) to the reader.

Remark 1. If we take β = 0 in Theorem 4, the result is the same as that obtained in [5].

Remark 2. Note that if we divide (2) by \((\alpha^2 + \beta^2)^{1/2} \) and let \(α + iβ → ∞ \) along the ray \(te^{iγ} \) the classes \(B(α + iβ) \) "tend" to the full class of γ-spiral-like functions. If we also let \(α + iβ → ∞ \) in Theorem 4, we find that \(λ = λ(α, β) → (2 \cos^2 γ)^{-1} \); and this is precisely the Hardy class result.
previously known for γ-spiral-like functions [1].

Remark 3. It is interesting to observe that the level curves of $\lambda = (\alpha^2 + \beta^2)[\alpha(2\alpha - 1)]^{-1}$ are the right branches of certain hyperbolas that are symmetric with respect to the real line; and they converge on the vertical line $\alpha = \frac{1}{2}$ (as $\lambda \to \infty$). For instance, if $\lambda = 1$ we obtain the right branch of the hyperbola $4(\alpha - \frac{1}{2})^2 - 4\beta^2 = 1$.

The authors wish to thank John Harrington for pointing out an error in the proof of Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, WESTERN MICHIGAN UNIVERSITY, KALAMAZOO, MICHIGAN 49001

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BROCKPORT, NEW YORK 14420

DEPARTMENT OF MATHEMATICS, THE BABES BOLYAI UNIVERSITY, CLUJ, ROMANIA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104