Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the distribution of zeros of entire functions


Author: A. R. Reddy
Journal: Proc. Amer. Math. Soc. 45 (1974), 105-112
MSC: Primary 30A66
DOI: https://doi.org/10.1090/S0002-9939-1974-0369697-3
MathSciNet review: 0369697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(z)$ be any transcendental entire function. Let $ {r_k}$ denote the absolute value of the zero $ {z_k}$ of $ {f^{(k)}}(z)$ which is nearest to the origin. Ålander, Erdös and Rényi, and Pólya have investigated the relation between $ {r_k}$ and the growth of the function $ f(z)$. Let $ {s_k}$ denote the largest disk about the origin where $ {f^{(k)}}(z)$ is univalent. Boas, Levinson, and Pólya have obtained some relations between the growth of the function $ f(z)$ and $ {s_k}$. Recently Shah and Trimble have sharpened the results of Boas and Pólya. We present here results in a different direction, generalizing the above quoted results. We also present results connecting the zero-free disks and the univalent disks about the origin of the normalized remainders of $ f(z)$ with the growth of $ f(z)$.


References [Enhancements On Off] (What's this?)

  • [1] M. Ålander, Sur le déplacement des zéros des fonctions entières par leur dérivation, Thesis, Upsala, 1914.
  • [2] -, Sur les dérivées successives des fonctions régulières, Opuscula Mathematica, A. Wiman dedicata, Lund, 1930, 79-93.
  • [3] R. P. Boas, Univalent derivatives of entire functions, Duke Math. J. 6 (1940), 719-721. MR 2, 82. MR 0002601 (2:82b)
  • [4] -, Entire functions, Academic Press, New York, 1954. MR 16, 914. MR 0068627 (16:914f)
  • [5] R. P. Boas and A. R. Reddy, Zeros of successive derivatives of entire functions, Bull. Amer. Math. Soc. 79 (1973), 64-65; J. Math. Anal. Appl. 42 (1973), 466-473. MR 0333183 (48:11508)
  • [6] J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. (3) 23 (1971), 348-370. MR 45 #5358. MR 0296297 (45:5358)
  • [7] J. D. Buckholtz and J. K. Shaw, Zeros of partial sums and remainders of power series, Trans. Amer. Math. Soc. 166 (1972), 269-284. MR 45 #8810. MR 0299762 (45:8810)
  • [8] D. M. Campbell, Locally univalent functions with locally univalent derivatives, Trans. Amer. Math. Soc. 162 (1972), 395-409. MR 0286992 (44:4199)
  • [9] P. Erdös and A. Rényi, On the number of zeros of successive derivatives of analytic functions, Acta Math. Acad. Sci. Hungar. 7 (1956), 125-144. MR 18, 201. MR 0080155 (18:201b)
  • [10] G. H. Hardy, On the zeros of a class of integral functions, Messenger of Math. 34 (1905), 97-101.
  • [11] N. Levinson, A theorem of Boas, Duke Math. J. 8 (1941), 181-182. MR 2, 274. MR 0003802 (2:274a)
  • [12] G. Pólya, Some problems connected with Fourier's work on transcendental equations, Quart. Math. 1 (1930), 622-634.
  • [13] -, On the zeros of derivatives of a function and its analytic character, Bull. Amer. Math. Soc. 49 (1943), 178-191. MR 4, 192. MR 0007781 (4:192d)
  • [14] A. R. Reddy, Note on a theorem of Erdös and Rényi, Acta Math. Acad. Sci. Hungar. 20 (1969), 241-243. MR 38 #6067. MR 0237786 (38:6067)
  • [15] S. M. Shah and S. Y. Trimble, Univalent functions with univalent derivatives. II, Trans. Amer. Math. Soc. 144 (1969), 313-320. MR 40 #2841. MR 0249598 (40:2841)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A66

Retrieve articles in all journals with MSC: 30A66


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0369697-3
Keywords: Zeros of entire functions, zero-free disks, univalent disks
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society