Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of Banach's contraction principle


Author: Lj. B. Ćirić
Journal: Proc. Amer. Math. Soc. 45 (1974), 267-273
MSC: Primary 54H25
DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2
MathSciNet review: 0356011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ T:M \to M$ be a mapping of a metric space $ (M,d)$ into itself. A mapping $ T$ will be called a quasi-contraction iff $ d(Tx,Ty) \leqslant q\max \{ d(x,y);d(x,Tx);d(y,Ty);d(x,Ty);d(y,Tx)\} $ for some $ q < 1$ and all $ x,y \in M$. In the present paper the mappings of this kind are investigated. The results presented here show that the condition of quasi-contractivity implies all conclusions of Banach's contraction principle. Multi-valued quasi-contractions are also discussed.


References [Enhancements On Off] (What's this?)

  • [1] V. W. Bryant, A remark on a fixed point theorem for iterated mappings, Amer. Math. Monthly 75 (1968), 399-400. MR 37 #2210. MR 0226621 (37:2210)
  • [2] Lj. Cirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. 12 (26) (1971), 19-26. MR 46 #8203. MR 0309092 (46:8203)
  • [3] -, Fixed point theorems for mappings with a generalized contractive iterate at a point, Publ. Inst. Math. 13 (27) (1972), 11-16. MR 0346765 (49:11490)
  • [4] -, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9 (24) (1972), 265-272. MR 0341460 (49:6211)
  • [5] -, On contraction type mappings, Math. Balkanica 1 (1971), 52-57. MR 0324494 (48:2846)
  • [6] L. Dube and S. Singh, On multi-valued contraction mappings, Bull. Math. Soc. Math. RSR 14 (1970), 307-310 (1971). MR 0322841 (48:1202)
  • [7] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10. MR 22 #11375. MR 0120625 (22:11375)
  • [8] L. F. Guseman, Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615-618. MR 42 #919. MR 0266010 (42:919)
  • [9] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405-408. MR 41 #2487. MR 0257838 (41:2487)
  • [10] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. MR 40 #8035. MR 0254828 (40:8035)
  • [11] S. Reich, Fixed points of contractive functions, Bol. Un. Mat. Ital. (4) 5 (1972), 26-42. MR 0309095 (46:8206)
  • [12] V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc. 23 (1969), 631-634. MR 40 #3531. MR 0250292 (40:3531)
  • [13] R. Smithson, Fixed points for contractive multifunctions, Proc. Amer. Math. Soc. 27 (1971), 192-194. MR 42 #2466. MR 0267564 (42:2466)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H25

Retrieve articles in all journals with MSC: 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2
Keywords: Quasi-contractions, multi-valued quasi-contractions, fixed-point theorems
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society