Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Diagonal equivalence to matrices with prescribed row and column sums. II


Author: Richard Sinkhorn
Journal: Proc. Amer. Math. Soc. 45 (1974), 195-198
MSC: Primary 15A21
DOI: https://doi.org/10.1090/S0002-9939-1974-0357434-8
MathSciNet review: 0357434
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a nonnegative $ m \times n$ matrix and let $ r = ({r_1}, \cdots ,{r_m})$ and $ c = ({c_1}, \cdots ,{c_n})$ be positive vectors such that $ \Sigma _{i = 1}^m{r_i} = \Sigma _{j = 1}^n{c_j}$. It is well known that if there exists a nonnegative $ m \times n$ matrix $ B$ with the same zero pattern as $ A$ having the $ i$th row sum $ {r_i}$ and $ j$th column sum $ {c_j}$, there exist diagonal matrices $ {D_1}$ and $ {D_2}$ with positive main diagonals such that $ {D_1}A{D_2}$ has $ i$th row sum $ {r_i}$ and $ j$th column sum $ {c_j}$. However the known proofs are at best cumbersome. It is shown here that this result can be obtained by considering the minimum of a certain real-valued function of $ n$ positive variables.


References [Enhancements On Off] (What's this?)

  • [1] E. F. Beckenbach and R. Bellman, Inequalities, 2nd rev. ed., Ergebnisse der Math. und ihrer Grenzgebiete, Heft 30, Springer-Verlag, New York, 1965. MR 33 #236. MR 0192009 (33:236)
  • [2] R. A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math. 20 (1968), 144-157. MR 36 #2636. MR 0219556 (36:2636)
  • [3] R. A. Brualdi, S. V. Parter and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. Appl. 16 (1966), 31-50. MR 34 #5844. MR 0206019 (34:5844)
  • [4] D. Z. Djoković, Note on nonnegative matrices, Proc. Amer. Math. Soc. 25 (1970), 80-82. MR 41 #1768. MR 0257114 (41:1768)
  • [5] D. London, On matrices with a doubly stochastic pattern, J. Math. Anal. Appl. 34 (1971), 648-652. MR 43 #7448. MR 0281733 (43:7448)
  • [6] M. V. Menon, Matrix links, an extremization problem, and the reduction of a nonnegative matrix to one with prescribed row and column sums, Canad. J. Math. 20 (1968), 225-232. MR 36 #3804. MR 0220752 (36:3804)
  • [7] M. V. Menon and H. Schneider, The spectrum of a nonlinear operator associated with a matrix, Linear Algebra and Appl. 2 (1969), 321-334. MR 40 #162. MR 0246893 (40:162)
  • [8] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967), 343-348. MR 35 #1617. MR 0210731 (35:1617)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A21

Retrieve articles in all journals with MSC: 15A21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0357434-8
Keywords: Nonnegative matrix, diagonal equivalence, fully indecomposable matrix, zero pattern
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society