Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Zero-one laws for stable measures

Authors: R. M. Dudley and Marek Kanter
Journal: Proc. Amer. Math. Soc. 45 (1974), 245-252
MSC: Primary 60B05; Secondary 60F20
MathSciNet review: 0370675
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any stable measure $ \mu $ on a vector space, every measurable linear subspace has measure 0 or 1.

References [Enhancements On Off] (What's this?)

  • [1] W. Feller, An introduction to probability theory and its applications. Vol.II, 2nd ed., Wiley, New York, 1971. MR 42 #5292. MR 0270403 (42:5292)
  • [2] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), 199-211. MR 42 #1200. MR 0266293 (42:1200)
  • [3] A. Hinčin, Three pearls of number theory, Graylock Press, New York, 1952. MR 13, 724. MR 0046372 (13:724b)
  • [4] M. Loève, Probability theory. 3rd ed., Van Nostrand, Princeton, N.J., 1963. MR 34 #3596. MR 0203748 (34:3596)
  • [5] L. Schwartz, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A602-A605. MR 34 #6494. MR 0206676 (34:6494)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B05, 60F20

Retrieve articles in all journals with MSC: 60B05, 60F20

Additional Information

Keywords: Stable measure, strictly stable, zero-one law, measurable vector space
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society