Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gleason parts and certain counterexamples in the big disc context


Author: J. P. Milaszewicz
Journal: Proc. Amer. Math. Soc. 45 (1974), 217-222
MSC: Primary 46J10
DOI: https://doi.org/10.1090/S0002-9939-1974-0380421-0
MathSciNet review: 0380421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part of this paper, Lemmas (1.1) and (1.4) provide a generalization of the fact that no Cauchy measures exist in the big disc. In the second part we show that this fact implies the existence of the H. Bohr and J. Favard counterexamples concerning harmonic and analytic almost periodic functions.


References [Enhancements On Off] (What's this?)

  • [1] R. Arens and I. M. Singer, Generalized analytic functions, Trans. Amer. Math. Soc. 81 (1956), 379-393. MR 17, 1226. MR 0078657 (17:1226e)
  • [2] R. Arens, A Banach algebra generalization of conformal mappings of the disc, Trans. Amer. Math. Soc. 81 (1956), 501-513. MR 17,1226. MR 0078658 (17:1226f)
  • [3] A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, 1932.
  • [4] E. Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. 70 (1964), 121-122. MR 28 #1510. MR 0158284 (28:1510)
  • [5] H. Bohr, Zur Theorie der fastperiodischen Funktionen. III. Dirichletentwicklung analytischer Funktionen, Acta Math. 47 (1926), 237-281. MR 1555216
  • [6] J. Favard, Sur les fonctions harmoniques presque périodiques, Thèse, Paris, 1927, Gauthier-Villars, Editeurs.
  • [7] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [8] A. M. Gleason, Function algebras, Seminars on Analytic Functions, vol. II, Institute for Advanced Study, Princeton, N. J., 1957, pp. 213-226.
  • [9] K. Hoffman, Fatou's theorem for generalized analytic functions, Seminars on Analytic Functions, vol. II, Institute for Advanced Study, Princeton, N. J., 1957, pp. 227-239.
  • [10] -, Boundary behavior of generalized analytic functions, Trans. Amer. Math. Soc. 87 (1958), 447-466. MR 20 #3424. MR 0096942 (20:3424)
  • [11] K. Hoffman and I. M. Singer, Maximal subalgebras of $ C(\Gamma )$, Amer. J. Math. 79 (1957), 295-305. MR 19,46. MR 0085478 (19:46e)
  • [12] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317. MR 26 #6820. MR 0149330 (26:6820)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10

Retrieve articles in all journals with MSC: 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0380421-0
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society