A characterization of the connectivity of a manifold in terms of large open cells

Author:
R. Richard Summerhill

Journal:
Proc. Amer. Math. Soc. **45** (1974), 285-290

MSC:
Primary 57A60

MathSciNet review:
0380808

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If and are integers, , and is a topological -manifold without boundary, it is shown that is -connected if and only if there is a ``tame'' -dimensional closed subset in such that is homeomorphic to .

**[1]**Morton Brown,*A mapping theorem for untriangulated manifolds*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 92–94. MR**0158374****[2]**E. H. Connell,*A topological 𝐻-cobordism theorem for 𝑛≥5*, Illinois J. Math.**11**(1967), 300–309. MR**0212808****[3]**Robert D. Edwards and Robion C. Kirby,*Deformations of spaces of imbeddings*, Ann. Math. (2)**93**(1971), 63–88. MR**0283802****[4]**Ross Geoghegan and R. Richard Summerhill,*Concerning the shapes of finite-dimensional compacta*, Trans. Amer. Math. Soc.**179**(1973), 281–292. MR**0324637**, 10.1090/S0002-9947-1973-0324637-1**[5]**Ross Geoghegan and R. Richard Summerhill,*Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds*, Trans. Amer. Math. Soc.**194**(1974), 141–165. MR**0356061**, 10.1090/S0002-9947-1974-0356061-0**[6]**Ross Geoghegan and R. Richard Summerhill,*Infinite-dimensional methods in finite-dimensional geometric topology*, Bull. Amer. Math. Soc.**78**(1972), 1009–1014. MR**0312501**, 10.1090/S0002-9904-1972-13086-6**[7]**M. H. A. Newman,*The engulfing theorem for topological manifolds*, Ann. of Math. (2)**84**(1966), 555–571. MR**0203708****[8]**R. Richard Summerhill,*General position for closed subsets of Euclidean space*, General Topology and Appl.**3**(1973), 339–345. MR**0331348**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57A60

Retrieve articles in all journals with MSC: 57A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0380808-6

Article copyright:
© Copyright 1974
American Mathematical Society