A CHARACTERIZATION OF THE CONNECTIVITY OF A MANIFOLD IN TERMS OF LARGE OPEN CELLS

R. RICHARD SUMMERHILL

ABSTRACT. If k and n are integers, $0 \leq k < n - 3$, and M^n is a topological n-manifold without boundary, it is shown that M is k-connected if and only if there is a "tame" $(n - k - 1)$-dimensional closed subset X in M such that $M - X$ is homeomorphic to E^n.

1. Introduction. In [1] Morton Brown proved that any compact connected topological n-manifold M^n without boundary is the continuous image of an n-cell such that the boundary of the cell is taken onto a subset of M having dimension $\leq n - 1$ and the interior of the cell is taken homeomorphically onto the rest of M. Thus any compact n-manifold can be obtained from euclidean n-space E^n by simply (and carefully) pasting on a space X of dimension $\leq n - 1$. We examine here the question of just how small the dimension of X can be made and show that this question is directly related to the connectivity of M.

By a (topological) n-manifold M^n, we mean a separable metric space, each point of which has an open neighborhood homeomorphic to E^n (we shall assume throughout that all manifolds are without boundary). A euclidean chart for M is a pair (h, W) where W is an open subset of M and $h : E^n \to W$ is a homeomorphism. For any chart (h, W) of M and any real number $t > 0$, let $W_t = h(C_t)$ where C_t is the (closed) n-cell in E^n with center 0 and radius t.

A closed subset X of a topological space Y is a Z_1-set if for every nonempty 1-connected open subset U of Y, $U - X$ is nonempty and 1-connected. If Y is a metric space, X is a subset of Y, and $\epsilon > 0$, let $N(X, \epsilon)$ denote the set of points in Y whose distance from X is less than ϵ. An ϵ-push of the pair (Y, X) is a homeomorphism h of Y for which an ϵ-isotopy H of Y exists satisfying: $H_0 = 1$, $H_1 = h$, and $H_t|Y - N(X, \epsilon) = 1$ for each

Received by the editors October 27, 1972 and, in revised form, December 29, 1972.

A closed subset X of E^n is said to be a strong Z_m-set in E^n (m an integer, $-1 \leq m < n$) if for each compact subpolyhedron Q of E^n having dimension $\leq m + 1$, and each $\epsilon > 0$, there exists an ϵ-push h of $(E^n, X \cap Q)$ such that $h(X) \cap Q = \emptyset$. Heuristically, one should think of a strong Z_m-set in E^n as a "tame" subset of E^n having dimension $\leq n - m - 2$: the strong Z_m-sets in E^n, $m \geq 1$, are precisely those which are Z_1-sets and have dimension $\leq n - m - 2$ (see 2.1 below). A closed subset X of an n-manifold M is a strong Z_m-set in M if for each point x in X there is a euclidean chart (h, W) for M such that $x \in W$ and $h^{-1}(X)$ is a strong Z_m-set in E^n.

The main result of this paper is

Theorem 1.1. Let k and n be integers, $0 \leq k < n - 3$, and let M^n be an n-manifold. Then M is k-connected if and only if there is a strong Z_{k-1}-set X in M such that $M - X$ is homeomorphic to E^n.

Our proof in the "if" direction is basically a general position argument: A singular k-sphere in M is pushed off X, and hence into $M - X$, where it bounds. The proof in the "only if" direction is similar to Morton Brown's proof in [11]. We start with an open cell in M and engulf a dense k-dimensional subset of M whose complement is $(n - k - 1)$-dimensional. The complement of the open cell (after the engulfing) is a strong Z_{k-1}-set in M. A more useful form of 1.1 is

Theorem 1.2. Let M^n be an n-manifold.

1. M is connected if and only if there is a closed subset X of M such that $\dim X \leq n - 1$ and $M - X$ is homeomorphic to E^n.

2. If $n \geq 4$, then M is simply connected if and only if there is a closed subset X of M such that $\dim X \leq n - 2$ and $M - X$ is homeomorphic to E^n.

3. If $2 \leq k \leq n - 3$, then M is k-connected if and only if there is a Z_1-set X in M such that $\dim X \leq n - k - 1$ and $M - X$ is homeomorphic to E^n.

Throughout the remainder of this paper let M^n be a fixed n-manifold with metric d.

In §2 we shall discuss strong Z_m-sets in M and in §3 we present the proofs of 1.1 and 1.2.

2. Tame sets in topological manifolds. First we give a characterization of strong Z_m-sets in terms of dimension and local homotopy properties.

Lemma 2.1. Let m be an integer, $-1 \leq m < n$, and let X be a closed subset of M.

1. If X is a strong Z_m-set in M, then $\dim X \leq n - m - 2$.
(2) If \(\dim X < n - 1 \), then \(X \) is a strong \(Z_{n-1} \)-set in \(M \).

(3) If \(\dim X < n - 2 \) and \(n \neq 3 \), then \(X \) is a strong \(Z_0 \)-set in \(M \).

(4) If \(\dim X = n - m - 2 < n - 3 \), \(n \neq 4 \), and \(X \) is a \(Z_1 \)-set in \(M \), then \(X \) is a strong \(Z_{m-1} \)-set in \(M \).

Proof. For the case \(M = E^n \), this lemma is a precise restatement of 3.1 of [5]. To prove the lemma for an arbitrary manifold, one need only look at charts and apply the case \(M = E^n \).

Lemma 2.2. Let \(X \) be a strong \(Z_m \)-set in \(M \) and let \(Q \) be a compact \((m + 1)\)-dimensional polyhedron. Then any map \(f: Q \to M \) is homotopic to a map \(g: Q \to M - X \).

Proof. There exist finitely many euclidean charts \((h_1, W_1), \ldots, (h_r, W_r)\) such that \(f(Q) \subseteq \bigcup_{i=1}^r W_i \) and \(h_i^{-1}(X) \) is a (possibly empty) strong \(Z_m \)-set in \(E^n \). Furthermore, there exists a real number \(t \) such that \(f(Q) \subseteq W_{1t} \cup \cdots \cup W_{rt} \) where \(W_{it} = h_i(C_t) \) for each \(i \leq r \). For each \(i \leq r \), let \(Q_i \) be a compact subpolyhedron of \(Q \) such that \(f(Q_i) \subseteq W_i \cup \cdots \cup W_{it} \) where \(W_{it} = h_i(h(Q)) \) for each \(i \). We shall construct, by induction, a sequence of maps \(f_1, \ldots, f_r \) from \(Q \) into \(M \) such that

(1) \(f \) is homotopic to \(f_1 \), and \(f_i \) is homotopic to \(f_{i+1} \) for each \(i \leq r \),

(2) \(f_i(Q_j) \subseteq W_j \) for each \(i, j \leq r \), and

(3) \(f_i(Q_1 \cup \cdots \cup Q_i) \cap X = \emptyset \) for each \(i \leq r \).

Then \(g = f_r \) is a map homotopic to \(f \) and \(g(Q) \cap X = \emptyset \). To start the induction consider the map \(f_1: Q_1 \to W_1 \). By the simplicial approximation theorem there is a map \(f_1': Q \to M \) such that \(f_1' \) is homotopic to \(f \), \(f_1'(Q_j) \subseteq W_j \) for each \(j \leq r \), and \(f_1'|Q_1: Q_1 \to W_1 \) is PL where \(W_1 \) has the PL structure induced by \(h_1 \). Since \(h_1^{-1}(X) \) is a strong \(Z_m \)-set in \(E^n \), there is a homeomorphism \(g_1: M \to M \) isotopic to the identity such that \(g_1 f_1'(Q_j) \subseteq W_j \) for each \(j \leq r \) and \(g_1 f_1'(Q_1) \cap X = \emptyset \). Then \(f_1 = g_1 f_1' \) is homotopic to \(f \), \(f_1(Q_j) \subseteq W_j \) for each \(j \leq r \), and \(f_1(Q_1) \cap X = \emptyset \). Now suppose that \(f_{i-1} \) has been chosen, \(i \leq r \), and consider the map \(f_{i-1}|Q_i: Q_i \to W_i \). By the simplicial approximation theorem there is a map \(f_i': Q \to M \) such that \(f_i' \) is homotopic to \(f_{i-1} \), \(f_i'(Q_j) \subseteq W_j \) for each \(j \leq r \), \(f_i'(Q_1 \cup \cdots \cup Q_{i-1}) \cap X = \emptyset \), and \(f_i'|Q_i: Q_i \to W_i \) is PL where \(W_i \) has the structure induced by \(h_i \). Since \(h_i^{-1}(X) \) is a strong \(Z_m \)-set in \(E^n \), there is a homeomorphism \(g_i: M \to M \) isotopic to the identity, such that \(g_i f_i'(Q_j) \subseteq W_j \) for each \(j \leq r \), \(g_i \) is fixed on \(f_i'(Q_1 \cup \cdots \cup Q_{i-1}) \), and \(g_i f_i'(Q_1) \cap X = \emptyset \). Then \(f_i = g_i f_i' \) is homotopic to \(f \), \(f_i(Q_j) \subseteq W_j \) for each \(j \leq r \), and \(f_i(Q_1 \cup \cdots \cup Q_i) \cap X = \emptyset \).

We now construct a \(k \)-dimensional dense subset of \(E^n \). Let \(k \) be an integer, \(0 \leq k \leq n \), and let \(f_0 \) be a rectilinear PL triangulation of \(E^n \) such that all the \(n \)-simplexes of \(f_0 \) have the same diameter. For each integer
i ≥ 1, let \(J_i \) be the \(i \)th barycentric subdivision of \(J_0 \) and let \(J^k_i \) be the \(k \)-skeleton of \(J_i \). Finally, set \(\overline{B}_n^k = \bigcup_{i=1}^{\infty} |J^k_i| \) and \(\overline{P}_{n-k-1} = E^n - \overline{B}_n^k \).

Clearly \(\overline{B}_n^k \) is \(k \)-dimensional and \(\overline{P}_{n-k-1} \) is \((n - k - 1)\)-dimensional. Moreover, \(\overline{B}_n^k \) satisfies a very nice "absorption" property:

Lemma 2.3. Let \(Q \) be a compact \(k \)-dimensional subpolyhedron of \(E^n \), let \(U \) be an open subset of \(E^n \), and let \(\epsilon > 0 \). Then there is a homeomorphism \(h: E^n \to E^n \), fixed outside \(U \) and moving points a distance less than \(\epsilon \), such that \(h(Q \cap U) \subset \overline{B}_n^k \).

Proof. This follows directly from Lemma 4.5 of [5].

Lemma 2.4. A closed subset \(X \) of \(E^n \) which is contained in \(\overline{P}_{n-k-1} \) is a strong \(Z_{k-1} \)-set in \(E^n \).

Proof. Let \(Q^k \) be a compact \(k \)-dimensional subpolyhedron of \(E^n \), let \(U \) be an open set in \(E^n \) containing \(X \cap Q \), and let \(\epsilon > 0 \). By 2.3, there is a homeomorphism \(h \), fixed outside \(U \) and moving points a distance less than \(\epsilon \), such that \(h(Q \cap U) \subset \overline{B}_n^k \). In particular, \(h^{-1}(X) \cap Q = \emptyset \). Hence if \(h^{-1} \) were \(\epsilon \)-isotopic to the identity by an isotopy fixing \(E^n - U \), then \(X \) would be a strong \(Z_{k-1} \)-set. But the existence of such an isotopy follows easily from the results in [3].

We now construct a dense \(k \)-dimensional subset of \(M \). Let \(\{(h_i, W_i)\} \) be a countable collection of euclidean charts such that \(M = \bigcup_{i=1}^{\infty} W_i \) and let \(\overline{B}_M^k = \bigcup_{i=1}^{\infty} h_i(\overline{B}_n^k) \) and \(\overline{P}_M^{n-k-1} = M - \overline{B}_M^k \). Clearly \(\overline{B}_M^k \) is \(k \)-dimensional and \(\overline{P}_M^{n-k-1} \) is \((n - k - 1)\)-dimensional. Moreover, \(\overline{B}_M^k \) can be written as the countable union of compact subsets \(\{\overline{B}_{(i)}^k\}_{i=1}^{\infty} \) of \(M \) having the following property: if \(i > 1 \), then there exists \(j > 1 \) such that \(\overline{B}_{(i)}^k \subset W_i \), and \(B_{(i)}^{-1}(\overline{B}_{(i)}^k) \) is a compact subpolyhedron of \(E^n \) having dimension \(\leq k \). For the remainder of this paper we fix \(\{(h_i, W_i)\}, \overline{B}_M^k, \overline{P}_M^{n-k-1}, \) and \(\overline{B}_{(i)}^k \) as above.

The final lemma of this section follows directly from 2.4.

Lemma 2.5. A closed subset of \(M \) which is contained in \(\overline{P}_M^{n-k-1} \) is a strong \(Z_{k-1} \)-set in \(M \).

3. Connectivity in topological manifolds. Let \(X \) be a \(Z_{k-1} \)-set in \(M \) where \(0 \leq k < n \) and let \(f: S^k \to M \) be a map of the \(k \)-sphere into \(M \). By Lemma 2.2, \(f \) is homotopic to a map \(g: S^k \to M - X \). If \(M - X \) is homeomorphic to \(E^n \), then \(g \) extends to a map of the \((k + 1)\)-ball into \(M - X \) and hence \(f \) is null-homotopic in \(M \). This proves

Theorem 3.1. If there is a strong \(Z_{k-1} \)-set \(X \) in \(M^n \), \(0 < k < n \), such that \(M - X \) is homeomorphic to \(E^n \), then \(M \) is \(k \)-connected.
To prove the converse of 3.1 (for codimension \(\geq 3 \)), we require the following engulfing lemma; its proof is almost precisely the same as the proof of Lemma 1 of [2] and therefore we leave the details to the reader.

Lemma 3.2. Let \(k \) be an integer, \(0 \leq k \leq n - 3 \), and let \(M^n \) be \(k \)-connected. Let \(Q \) be a compact subset of \(M \) such that for some chart \((g, U)\) of \(M \), \(Q \subset U \) and \(g^{-1}(Q) \) is a \(k \)-dimensional subpolyhedron of \(E^n \). If \((h, W)\) is a euclidean chart for \(M \) and \(t \) is a positive real number, then there is a homeomorphism \(f \) of \(M \) such that \(f|_{W_t} = 1 \) and \(f(W) \supset Q \).

Lemma 3.3. If \(k \) is an integer, \(0 \leq k \leq n - 3 \), and \(M^n \) is \(k \)-connected, then there is a euclidean chart \((g, U)\) of \(M \) such that \(U \) contains \(\overline{B}^k_{M} \).

Proof. Consider the compact subsets \(\overline{B}^k_{M(i)} \) of \(M \) as defined in the previous section and let \((h, W)\) be any euclidean chart of \(M \). By Lemma 3.2, there is a homeomorphism \(f_1 \) of \(M \) such that \(f_1(W) \supset \overline{B}^k_{(1)} \). Since \(\overline{B}^k_{1} \) is compact, there is a real number \(t_1 \geq 1 \) such that \(f_1(W_{t_1}) \supset \overline{B}^k_{(1)} \). Applying the lemma again, there is a homeomorphism \(f_2 \) of \(M \) such that \(f_2/_{f_1(W_{t_1})} = 1 \) and \(f_2f_1(W) \supset \overline{B}^k_{(2)} \). Let \(t_2 \geq \max \{t_1, 2\} \) and such that \(f_2f_1(W_{t_2}) \supset \overline{B}^k_{(2)} \). Continuing inductively, there is a sequence \(\{f_i\} \) of homeomorphisms of \(M \) and a sequence \(t_i \leq 2 \leq \cdots \) of real numbers such that

1. \(f_i|_t f_{i-1} \cdots f_1(W_{t_{i-1}}) = 1 \),
2. \(f_i \cdots f_1(W_{t_i}) \supset \overline{B}^k_{(i)} \), and
3. \(t_i \geq i \)

for each \(i \geq 1 \). Then \(f = \lim_{i \to \infty} f_i \cdots f_1|W \) is an embedding of \(W \) into \(M \) such that \(f(W) \supset \overline{B}^k_{M} \) and hence \((g, U) = (f h, f(W))\) is a euclidean chart satisfying the desired condition.

Theorem 3.4. If \(k \) is an integer, \(0 \leq k \leq n - 3 \), and \(M^n \) is \(k \)-connected, then there is a strong \(Z_{k-1} \)-set \(X \) in \(M \) such that \(M - X \) is homeomorphic to \(E^n \).

Proof. Let \((g, U)\) be a chart in \(M \) with \(\overline{B}^k_{M} \subset U \). Then \(X = M - U \) is closed in \(M \) and is contained in \(\overline{P}^{n-k-1} \). By 2.5, \(X \) is a strong \(Z_{k-1} \)-set in \(M \).

Proof of Theorem 1.1. Apply 3.1 and 3.4.

Proof of Theorem 1.2. (1) If \(M \) is connected, the result follows from the proof of the Theorem in [1]. The proof given there is an elementary form of engulfing and does not require codimension three. The converse is trivial since 0-spheres can easily be pushed off dimension 1 subsets. The proofs of (2) and (3) follow easily from 3.4 and 2.4.

We end the paper with a rather strange corollary to 3.3. While not direct-
ly related to the above results, it does show that the subset \overline{B}^k_M of M is independent of the charts $\{(h_i, W_i)\}$ and, in fact, depends only on the connectivity of M.

Corollary 3.5. Let k be an integer, $0 \leq k \leq n - 3$, $n \neq 4$, and let M be k-connected. Then \overline{B}^k_M and \overline{B}^k_n are homeomorphic.

Proof. Let (g, U) be a chart in M such that $\overline{B}^k_M \subseteq U$. By 5.4 and 2.5 of [5], there is a homeomorphism of E^n which takes $g^{-1}(\overline{B}^k_M)$ onto \overline{B}^k_n.

REFERENCES

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506