MULTIPLIERS VANISHING AT INFINITY
FOR CERTAIN COMPACT GROUPS

ALESSANDRO FIGÀ-TALAMANCA

ABSTRACT. We prove for certain compact groups G and $1 < p < \infty$, $p \neq 2$, that there exist operators commuting with left translations on $L^p(G)$ which are compact as operators on $L^2(G)$ but not as operators on $L^p(G)$.

Let G be a compact group and let Γ be the dual object of G, that is, the set of equivalence classes of irreducible unitary representations of G. For each $\gamma \in \Gamma$ we fix a representative D_γ of γ and a Hilbert space \mathbb{H}_γ of dimension d_γ on which $D_\gamma(x)$ acts. With this notation, if $f \in L^1(G)$ we can write the Fourier series of f as

$$f(x) \sim \sum_{\gamma \in \Gamma} d_\gamma \text{tr} (\hat{f}(\gamma) D_\gamma(x))$$

where tr is the ordinary trace and

$$\hat{f}(\gamma) = \int_G f(x) D_\gamma(x^{-1}) \, dx$$

is a linear transformation acting on \mathbb{H}_γ. (Warning: the notation here is not the same as in [7]: $\hat{f}(\gamma)$ denotes in this paper what Hewitt and Ross call the coefficient operator, cf. [7, (34.3)(a)].)

Following [7] we denote by $\mathbb{S} = \mathbb{S}(\Gamma)$ the space consisting of functions W on Γ such that $W(\gamma)$ is a linear transformation on \mathbb{H}_γ for each $\gamma \in \Gamma$.

Definition 1. An element $w \in \mathbb{S}$ is called a multiplier of $L^p(G)$ ($1 \leq p \leq \infty$) if for every $f \in L^p(G)$ the series $\sum_{\gamma \in \Gamma} d_\gamma \text{tr}(W(\gamma) \hat{f}(\gamma) D_\gamma(x))$, is the Fourier series of an element T_wf of $L^p(G)$. The space of multipliers is denoted by $M_p(G)$.

We notice that the operators T_wf of L^p into L^p are linear and (by the closed graph theorem) continuous. We can endow therefore $M_p(G)$ with a Banach space norm: the norm of $W \in M_p(G)$ is defined to be the norm of the

Received by the editors January 30, 1973.

AMS (MOS) subject classifications (1970). Primary 43A15, 43A75, 22C05.

1 Work supported by the C.N.R.
corresponding operator T_W on $L^p(G)$. It is easy to verify, for $p < \infty$, that
the operators T_W, with $W \in M_p$, are exactly the bounded linear operators on
$L^p(G)$ which commute by left translations.

Definition 2. A multiplier $W \in M_p(G)$ is said to vanish at infinity if
\[\lim_{y \to \infty} \|W(y)\| = 0, \]
where the norm is that of $W(y)$ as an operator on \mathbb{S}_γ.

It is known that if G is an Abelian group and $p \neq 2$, there exist multi-
pliers which vanish at infinity and are not the limit, in the norm of M_p, of
multipliers with finite support. For $p = 1$ or $p = \infty$ this is equivalent to the
classical result which asserts the existence of singular measures with Fourier-Stieltjes transform vanishing at infinity. For $1 < p < \infty$, $p \neq 2$, this was
proved in [4].

We remark that multipliers which are the limit in $M_p(G)$ of finitely sup-
ported ones are precisely those for which the corresponding operator on $L^p(G)$
is compact and that the elements of $\mathcal{S}(\Gamma)$ which vanish at infinity correspond
to compact operators on $L^2(G)$.

The purpose of the present paper is to extend the results described a-
bove, when $1 < p < \infty$ and $p \neq 2$, to a class of noncommutative compact
groups. We shall prove in fact the following:

Theorem A. Let J be an infinite index set and let $G = \prod_{i \in J} G_i$, where
for each i, G_i is a nontrivial compact group. Let $1 < p < \infty$ and $p \neq 2$. Then
there exists a multiplier $W \in M_p(G)$ which vanishes at infinity and is not
the limit, in the norm of M_p, of finitely supported elements of \mathbb{S}.

The proof of this theorem is based on two lemmas. The first lemma is
due to C. Fefferman and H. S. Shapiro [2, Theorem 1] and the second to
A. Bonami [1, pp. 374–375]. Both lemmas were stated and proved only for
commutative compact groups, but proofs can be easily translated into the
language of noncommutative groups, as will be indicated below.

Lemma 1 (Fefferman and Shapiro). Let $1 < p < \infty$, then there exists a
constant $\alpha = \alpha(p) > 0$ such that if $W \in M_p(G)$, and W satisfies the condi-
tions: (i) $W(\gamma_0) = 0$, where γ_0 is the equivalence class of the trivial repre-
sentation, (ii) $\|W\|_{M_p} \leq \alpha(p)$; then the multiplier defined by $W'(\gamma_0) = I$ (the
identity operator), and $W'(\gamma) = W(\gamma)$ for $\gamma \neq \gamma_0$, has norm one.

The proof of this lemma is almost exactly the same as that which is
given in [2] for the corresponding result for commutative groups. Only two
remarks are needed. First of all the norm-decreasing inclusion $M_p(G) \subseteq M_2(G)$,
a well-known fact for G commutative, is a consequence, for noncommutative
MULTIPLIERS VANISHING AT INFINITY

G, of recent results of C. Herz [6, Theorem C]. Second, the proof of Theorem 1 in [2] makes use of the fact that \(M_p = M_q \) for commutative \(G \), when \(1/p + 1/q = 1 \). This equality is not known to be true for noncommutative \(G \), but we can use the known fact that \(M_p = M_q' \), where \(M_q' \) is the space of “right” multipliers of \(L^q \), that is the space of \(W \in \mathbb{C} \) such that for \(f \in L^q \), the Fourier-series \(\sum_{\gamma \in \Gamma} d^g f(x) W(y) D_\gamma(x) \), represents a function in \(L^q [3] \). With these two remarks in mind the proof of Theorem 1 of [2] is easily reinterpreted to yield Lemma 1.

Before stating the second lemma we remark that if \(G = G_1 \times G_2 \) where \(G_1 \) and \(G_2 \) are compact groups with dual objects \(\Gamma_1 \) and \(\Gamma_2 \), respectively, then the dual object \(\Gamma \) of \(G \) can be written as \(\Gamma = \Gamma_1 \times \Gamma_2 \), in the sense that if \(\gamma \in \Gamma \), there exists a unique pair \((\gamma_1, \gamma_2) \in \Gamma_1 \times \Gamma_2 \), such that any representative \(D_\gamma \) of \(\gamma \) is unitarily equivalent to the tensor product \(D_{\gamma_1} \otimes D_{\gamma_2} \) of a representative \(D_{\gamma_1} \) of \(\gamma_1 \) and a representative \(D_{\gamma_2} \) of \(\gamma_2 \). We shall then write \(\gamma = \gamma_1 \times \gamma_2 \) [7, Theorem 27.4.3].

Lemma 2 (A. Bonami). Let \(G_1 \) and \(G_2 \) be compact groups, with dual objects \(\Gamma_1 \) and \(\Gamma_2 \) and let \(G = G_1 \times G_2 \). Let \(W_1 \) and \(W_2 \) be elements of \(M_p(G_1) \) and \(M_p(G_2) \), respectively, and suppose that \(\|W_1\|_p = \|W_2\|_p = 1 \). (As before \(\gamma_0 \) denotes the class containing the trivial representation.) Then the element \(W \in \mathbb{C}(\Gamma_1 \times \Gamma_2) \) defined by \(W(\gamma) = W_1(\gamma_1) \otimes W_2(\gamma_2) \), if \(\gamma = \gamma_1 \times \gamma_2 \), is an element of \(M_p(G) \) and \(\|W\|_p \leq 1 \).

Again, the proof of this lemma is exactly as in the commutative case [1, Lemma 1, p. 375].

Proof of Theorem A. If \(G = \Pi_{i \in J} G_i \) where \(G_i \) are nontrivial groups and \(J \) is an infinite set, we may assume, without loss of generality, that each \(G_i \) is infinite (if not divide \(J \) into infinitely many infinite subsets and group together the factors). We may also assume for simplicity that \(J \) is countable and in fact that \(J = \{1, 2, \ldots, l\} \). For each \(i \) we know that since \(p \neq 2 \) the norm-decreasing inclusion \(M_p(G_i) \subseteq M_2(G_i) \) is strict [5, Theorem 6]. This implies that the norm of \(M_p(G_i) \) is not equivalent to that of \(M_2(G_i) \) because \(M_p \) is not closed in \(M_2 \). Therefore we can find a finitely supported \(W_i \in M_p(G_i) \) such that \(W_i(\gamma_0) = 0 \), \(\|W_i\|_M \leq 1/i \), \(\|W_i\|_M = \alpha(p) \), where \(\alpha(p) \) is the constant appearing in the statement of Lemma 1. Let \(W_i' \) be the multiplier satisfying \(W_i'(\gamma_0) = 1 \), \(W_i'(\gamma) = W_i(\gamma) \) for \(\gamma \neq \gamma_0 \), whose norm is one by Lemma 1.

Applying inductively Lemma 2 we can construct elements \(W^{(n)}(\gamma) \in M_p(G^{(n)}) \) where \(G^{(n)} = \Pi_{i=1}^n G_i \), such that if \(\Gamma^{(n)} \) is the dual object of \(G^{(n)} \), and \(\gamma \in \Gamma^{(n)} \), \(\gamma = \gamma_1 \times \cdots \times \gamma_n \), then \(W^{(n)}(\gamma) = W_1'(\gamma_1) \otimes \cdots \otimes W_n'(\gamma_n) \) and \(\|W^{(n)}\|_M \leq 1 \).
Obviously we may consider $W^{(n)}$ as an element of $M_p(G)$ with the same norm, by defining $W^{(n)}(\gamma) = 0$, if $\gamma \not\in \Gamma_1 \times \cdots \times \Gamma_n$, where Γ_i is the dual object of G_i. Finally let W be a weak* limit of $W^{(n)}$ (we consider M_p as the dual space of A_p [3]). Then $W(\gamma) = W^{(n)}(\gamma)$ if $\gamma \in \Gamma_1 \times \cdots \times \Gamma_n$. We must show that W vanishes at infinity and is not the limit in the norm of M_p of finitely supported multipliers. Let $\epsilon > 0$ be given and let $1/n < \epsilon$. Denote by K_n the finite set $K_n = \{\gamma_1 \times \cdots \times \gamma_n; \gamma_i \in \text{supp } \gamma_i \subseteq \Gamma_i\}$. Let $\gamma \notin K_n$ and suppose $W(\gamma) \neq 0$.

Let $\gamma = \gamma_1 \times \cdots \times \gamma_m$; with $\gamma_i \in \Gamma_i$ and $\gamma_m \neq \gamma_0$. Since $\gamma \notin K_n$ and $W(\gamma) \neq 0$, then $m > n$. Now $W(\gamma) = W_1'(\gamma_1) \otimes \cdots \otimes W_m'(\gamma_m)$. Therefore $\|W(\gamma)\| \leq \|W_1'(\gamma_1)\| \cdots \|W_m'(\gamma_m)\| \leq \|W_m'(\gamma_m)\|$, but since $\gamma_m \neq \gamma_0$, $W_m'(\gamma_m) = W_m'(\gamma_m)$; therefore,

$$\|W(\gamma)\| \leq \|W_m'(\gamma_m)\| \leq \sup_{\gamma \in \Gamma_m} \|W_m'(\gamma)\| = \|W_m\|_{M_2} < 1/n.$$

We have proved that if $\gamma \in K_n$, $\|W(\gamma)\| < 1/n$ and hence W vanishes at infinity. On the other hand W cannot be the limit in the norm of M_p of finitely supported multipliers, for suppose \tilde{W} is a finitely supported multiplier satisfying $\|\tilde{W} - W\|_{M_p} < \alpha(p)/4$. Since the support of \tilde{W} is finite, for some m, $\Gamma_m \cap \text{supp } W \subseteq \{\gamma_0\}$.

Now $\|W_m\|_{M_p} > \alpha(p)/2$ so there exists a trigonometric polynomial f with $\|f\|_p = 1$, supp $\hat{f} \subseteq \Gamma_m$ such that $\|T_{W_m}f\|_p > \alpha(p)/2$.

Let $E \in \mathcal{S}(\Gamma)$ denote the characteristic function of γ_0. Then $E \in M_p(G)$, $\|E\|_{M_p} = 1$, and $E + W_m = W_m'$. Also $W|\Gamma_m = W_m'$ and $W(\gamma_0) = 1$. Thus one verifies that

$$(T_W - T_{\tilde{W}})f = T_E(T_W - T_{\tilde{W}})f + T_{W_m}f.$$

Therefore

$$\frac{\alpha(p)}{4} > \|W - \tilde{W}\|_{M_p} \geq \|(T_W - T_{\tilde{W}})f\|_p$$

$$\geq \|T_{W_m}f\|_p - \|T_E(T_W - T_{\tilde{W}})f\|_p$$

$$> \alpha(p)/2 - \alpha(p)/4 = \alpha(p)/4,$$

a contradiction. This completes the proof of the Theorem.

REFERENCES

ISTITUTO MATEMATICO, UNIVERSITÀ DI GENOVA, 16132 GENOVA, ITALY