Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multipliers vanishing at infinity for certain compact groups


Author: Alessandro Figà-Talamanca
Journal: Proc. Amer. Math. Soc. 45 (1974), 199-203
MSC: Primary 43A22; Secondary 22C05
DOI: https://doi.org/10.1090/S0002-9939-1974-0461035-0
MathSciNet review: 0461035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove for certain compact groups $ G$ and $ 1 < p < \infty ,p \ne 2$, that there exist operators commuting with left translations on $ {L^p}(G)$ which are compact as operators on $ {L^2}(G)$ but not as operators on $ {L^p}(G)$.


References [Enhancements On Off] (What's this?)

  • [1] A. Bonami, Étude des coefficients de Fourier des fonctions de $ {L^p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 2, 335-402. MR 44 #727. MR 0283496 (44:727)
  • [2] C. Fefferman and H. S. Shapiro, A planar face on the unit sphere of the multiplier space $ {M_p},1 < p < \infty $, Proc. Amer. Math. Soc. 36 (1972), 435-439. MR 0308669 (46:7783)
  • [3] A. Figà-Talamanca, Translation invariant operators in $ {L^p}$, Duke Math. J. 32 (1965), 495-501. MR 31 #6095. MR 0181869 (31:6095)
  • [4] A. Figà-Talamanca and G. I. Gaudry, Multipliers of $ {L^p}$ which vanish at infinity, J. Functional Analysis 7 (1971), 475-486. MR 43 #2429. MR 0276689 (43:2429)
  • [5] A. Figà-Talamanca and D. Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 ( 1966), 505-514. MR 34 #6444. MR 0206626 (34:6444)
  • [6] C. Herz, The theory of $ p$-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. MR 42 #7833. MR 0272952 (42:7833)
  • [7] E. Hewitt and K. Ross, Abstract harmonic analysis. Vol. II. Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378. MR 0262773 (41:7378)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A22, 22C05

Retrieve articles in all journals with MSC: 43A22, 22C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0461035-0
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society