Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Coefficient estimates for exponential series


Author: W. T. Sledd
Journal: Proc. Amer. Math. Soc. 45 (1974), 357-364
MSC: Primary 30A16
DOI: https://doi.org/10.1090/S0002-9939-1974-0349970-5
MathSciNet review: 0349970
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Results are obtained which relate the size of the coefficients $ {a_n}$ of an exponential series $ f(x) = \Sigma _{n = 0}^\infty {a_n}{\varepsilon ^{ - {\Lambda _n}x}},x > 0,\operatorname{Re} {\Lambda _n} > 0$, to the function $ f$. These results involve comparisons between weighted $ {l^p}$ sums of the sequence $ ({a_n})$ and weighted $ {L^p}$ integrals of $ f$ on $ [0,\infty )$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A16

Retrieve articles in all journals with MSC: 30A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0349970-5
Keywords: Carleson measure, exponential series
Article copyright: © Copyright 1974 American Mathematical Society