Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pointwise bounds on eigenfunctions and wave packets in $ N$-body quantum systems. II


Author: Barry Simon
Journal: Proc. Amer. Math. Soc. 45 (1974), 454-456
MSC: Primary 35P99; Secondary 81.47
DOI: https://doi.org/10.1090/S0002-9939-1974-99954-0
Part I: Proc. Amer. Math. Soc. 42, no. 2 (1974), 395-401
MathSciNet review: 0417596
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a simple proof (and mild improvement) of Schnol's result that $ {L^2}$ eigenfunctions of $ - \Delta + V$ are $ O(\exp ( - ar))$ for any $ a > 0$ whenever $ V \to \infty $ as $ r \to \infty $.


References [Enhancements On Off] (What's this?)

  • [1] E. B. Davies, Properties of the Green's functions of operators, J. London Math. Soc. (to appear).
  • [2] J. M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1974), 251-270. MR 0391792 (52:12611)
  • [3] T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151-177. MR 19, 501. MR 0088318 (19:501a)
  • [4] -, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [5] E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572-615. MR 21 #5901. MR 0107176 (21:5901)
  • [6] A. O'Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319. MR 0336119 (49:895)
  • [7] M. Reed and B. Simon, Methods of modern mathematical physics. Vol. II, Academic Press, New York (to appear). MR 0493422 (58:12430a)
  • [8] T. Regge and V. de Alfaro, Potential scattering, North-Holland, Amsterdam; Interscience, New York, 1965. MR 32 #8724. MR 0191316 (32:8724)
  • [9] J. E. Šnol', On the behavior of the eigenfunctions of Schrödinger's equation, Mat. Sb. 46 (88) (1957), 273-286; erratum, 259. (Russian) MR 23 #A2618.
  • [10] B. Simon, Pointwise bounds on eigenfunctions and wave packets in $ N$-body quantum systems. I, Proc. Amer. Math. Soc. 42 (1974), 395-401. MR 0417596 (54:5646)
  • [11] -, Quantum mechanics for Hamiltonians defined on quadratic forms, Princeton Univ. Press, Princeton, N. J., 1971.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35P99, 81.47

Retrieve articles in all journals with MSC: 35P99, 81.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-99954-0
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society