Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ P$-sets in $ F\sp{'} $-spaces


Author: Robert E. Atalla
Journal: Proc. Amer. Math. Soc. 46 (1974), 125-132
MSC: Primary 54C05; Secondary 54G05
DOI: https://doi.org/10.1090/S0002-9939-1974-0348701-2
MathSciNet review: 0348701
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $ P$-set is one which is interior to any zero set which contains it. An $ F'$-space may be characterized as one in which the closure of a cozero set is a $ P$-set. We study applications of $ P$-sets to the topology of $ F'$-spaces, and certain set-theoretical operations under which the class of $ P$-sets is stable. A. I. Veksler has shown that in a basically disconnected space the closure of an arbitrary union of $ P$-sets is a $ P$-set, while in $ F'$-spaces we are only able to prove this for countable unions. Our main result is an example of a set in the compact $ F$-space $ \beta N\backslash N$ which is not a $ P$-set, but which is the closure of a union of $ P$-sets. The set is related to the almost-convergent functions of G. G. Lorentz.


References [Enhancements On Off] (What's this?)

  • [A$ _{1}$] R. E. Atalla, On the multiplicative behavior of regular matrices, Proc. Amer. Math. Soc. 26 (1970), 437-446. MR 42 #6633. MR 0271752 (42:6633)
  • [A$ _{2}$] -, Regular matrices and $ P$-sets in $ \beta N\backslash N$, Proc. Amer. Math. Soc. 37 (1973), 157-162. MR 0324655 (48:3005)
  • [C-H-N] W. W. Comfort, N. Hindman and S. Negrepontis, $ F'$-spaces and their products with $ P$-spaces, Pacific J. Math. 28 (1969), 489-502. MR 39 #3440. MR 0242106 (39:3440)
  • [D] V. T. Dikanova, Boundedness conditions on sets in extended $ K$-space, Sibirsk. Mat. Ž. 9 (1968), 804-815 = Siberian Math. J. 9 (1968), 602-609. MR 38 #4952. MR 0236657 (38:4952)
  • [Du] J. P. Duran, Strongly regular matrices, almost convergence, and Banach limits, Duke Math. J. 39 (1972), 497-502. MR 0310591 (46:9689)
  • [G-H] L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. MR 18, 9. MR 0078980 (18:9d)
  • [G-J] L. Gillman and M. Jerison, Rings of continuous functions, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [H-I] M. Henriksen and J. Isbell, Multiplicative summability methods and the Stone-Čech compactification. II, Notices Amer. Math. Soc. 11 (1964), 90-91. Abstract #608-116.
  • [H-S] J. D. Hill and W. T. Sledd, Approximation in bounded summability fields, Canad. J. Math. 20 (1968), 410-415. MR 36 #5561. MR 0222510 (36:5561)
  • [H-R] K. Hoffman and A. Ramsay, Algebras of bounded sequences, Pacific J. Math. 15 (1965), 1239-1248. MR 0198283 (33:6442)
  • [L] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. MR 10, 367. MR 0027868 (10:367e)
  • [R$ _{1}$] R. A. Raimi, Convergence, density, and $ \tau $-density of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 708-712. MR 27 #3966. MR 0154006 (27:3966)
  • [R$ _{2}$] -, Homeomorphisms and invariant measures for $ \beta N\backslash N$, Duke Math. J. 33 (1966), 1-12. MR 33 #6608. MR 0198450 (33:6608)
  • [S] G. L. Seever, Measures on $ F$-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280. MR 37 #1976. MR 0226386 (37:1976)
  • [V] A. I. Veksler, $ P$-sets in topological spaces, Dokl. Akad. Nauk SSSR 193 (1970), 510-513 = Soviet Math. Dokl. 11 (1970), 953-956. MR 43 #5480. MR 0279759 (43:5480)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C05, 54G05

Retrieve articles in all journals with MSC: 54C05, 54G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0348701-2
Keywords: $ F$-space, basically disconnected, extremally disconnected, $ P$-set, countable chain condition, almost convergent sequence
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society