-sets in -spaces

Author:
Robert E. Atalla

Journal:
Proc. Amer. Math. Soc. **46** (1974), 125-132

MSC:
Primary 54C05; Secondary 54G05

MathSciNet review:
0348701

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A -set is one which is interior to any zero set which contains it. An -space may be characterized as one in which the closure of a cozero set is a -set. We study applications of -sets to the topology of -spaces, and certain set-theoretical operations under which the class of -sets is stable. A. I. Veksler has shown that in a basically disconnected space the closure of an arbitrary union of -sets is a -set, while in -spaces we are only able to prove this for countable unions. Our main result is an example of a set in the compact -space which is not a -set, but which is the closure of a union of -sets. The set is related to the almost-convergent functions of G. G. Lorentz.

**[A]**Robert E. Atalla,*On the multiplicative behavior of regular matrices*, Proc. Amer. Math. Soc.**26**(1970), 437–446. MR**0271752**, 10.1090/S0002-9939-1970-0271752-X**[A]**R. E. Atalla,*Regular matrices and 𝑃-sets in 𝛽𝑁\𝑁*, Proc. Amer. Math. Soc.**37**(1973), 157–162. MR**0324655**, 10.1090/S0002-9939-1973-0324655-9**[C-H-N]**W. W. Comfort, Neil Hindman, and S. Negrepontis,*𝐹′-spaces and their product with 𝑃-spaces*, Pacific J. Math.**28**(1969), 489–502. MR**0242106****[D]**Z. T. Dikanova,*Conditions for the boundedness of sets in an extended 𝐾-space*, Sibirsk. Mat. Z.**9**(1968), 804–815 (Russian). MR**0236657****[Du]**J. Peter Duran,*Strongly regular matrices, almost-convergence, and Banach limits*, Duke Math. J.**39**(1972), 497–502. MR**0310591****[G-H]**Leonard Gillman and Melvin Henriksen,*Rings of continuous functions in which every finitely generated ideal is principal*, Trans. Amer. Math. Soc.**82**(1956), 366–391. MR**0078980**, 10.1090/S0002-9947-1956-0078980-4**[G-J]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[H-I]**M. Henriksen and J. Isbell,*Multiplicative summability methods and the Stone-Čech compactification*. II, Notices Amer. Math. Soc.**11**(1964), 90-91. Abstract #608-116.**[H-S]**J. D. Hill and W. T. Sledd,*Approximation in bounded summability fields*, Canad. J. Math.**20**(1968), 410–415. MR**0222510****[H-R]**Kenneth Hoffman and Arlan Ramsay,*Algebras of bounded sequences*, Pacific J. Math.**15**(1965), 1239–1248. MR**0198283****[L]**G. G. Lorentz,*A contribution to the theory of divergent sequences*, Acta Math.**80**(1948), 167–190. MR**0027868****[R]**Ralph A. Raimi,*Convergence, density, and 𝜏-density of bounded sequences*, Proc. Amer. Math. Soc.**14**(1963), 708–712. MR**0154006**, 10.1090/S0002-9939-1963-0154006-8**[R]**Ralph A. Raimi,*Homeomorphisms and invariant measures for 𝛽𝑁-𝑁*, Duke Math. J.**33**(1966), 1–12. MR**0198450****[S]**G. L. Seever,*Measures on 𝐹-spaces*, Trans. Amer. Math. Soc.**133**(1968), 267–280. MR**0226386**, 10.1090/S0002-9947-1968-0226386-5**[V]**A. I. Veksler,*𝑃-sets in topological spaces*, Dokl. Akad. Nauk SSSR**193**(1970), 510–513 (Russian). MR**0279759**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54C05,
54G05

Retrieve articles in all journals with MSC: 54C05, 54G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1974-0348701-2

Keywords:
-space,
basically disconnected,
extremally disconnected,
-set,
countable chain condition,
almost convergent sequence

Article copyright:
© Copyright 1974
American Mathematical Society