Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A generalization of a theorem by D. K. Faddeev

Author: Konrad Behnen
Journal: Proc. Amer. Math. Soc. 46 (1974), 51-58
MSC: Primary 28A20; Secondary 62G05
MathSciNet review: 0352382
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a simple proof of the statement $ {\lim _{n \to \infty }}\int {{K_n}(x,y)f(y)d\mu (y) = f(x)}$ for $ \mu $-almost all $ x$ under weaker and more general assumptions than those of the usual Faddeev theorems.

References [Enhancements On Off] (What's this?)

  • [1] K. Behnen, A characterisation of certain rank-order tests with bounds for the asymptotic relative efficiency, Ann. Math. Statist. 43 (1972), 1839-1851. MR 0373147 (51:9349)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [3] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [4] J. Hájek and Z. Šidák, Theory of rank tests, Academic Press, New York; Academia, Prague, 1967. MR 37 #4925. MR 0229351 (37:4925)
  • [5] I. P. Natanson, Theorie der Funktionen einer reellen Veränderlichen, 3rd ed., Akademie-Verlag, Berlin, 1969. MR 0259033 (41:3675)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A20, 62G05

Retrieve articles in all journals with MSC: 28A20, 62G05

Additional Information

Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society