Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive linear operators continuous for strict topologies


Author: J. A. Crenshaw
Journal: Proc. Amer. Math. Soc. 46 (1974), 79-85
MSC: Primary 46E10
DOI: https://doi.org/10.1090/S0002-9939-1974-0370150-1
MathSciNet review: 0370150
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ A$ is an $ SW$ algebra of real-valued functions on a set $ X$ equipped with the weak topology for $ A$, and if $ A$ separates its zero sets, then many results valued for $ {C^b}(X)$ equipped with a strict topology remain true when $ A$ is equipped with a strict topology. The concepts of $ \alpha $-additivity and tight positive linear operators are introduced. It is shown that if $ T$ is a positive linear map on $ A$ into $ z$-separating $ SW$ algebra $ B$ and if $ T({1_A}) = {1_B}$, then there exists a continuous function $ \phi $ on $ Y$ (the domain of elements in $ B$) into $ X$ such that $ Tf(y) = f(\phi (y))$ if and only if $ T$ is an algebraic homomorphism and $ \tau $-additive.


References [Enhancements On Off] (What's this?)

  • [1] F. F. Bonsall, J. Lindenstrauss and R. R. Phelps, Extreme positive operators on algebras of functions, Math. Scand. 18 (1966), 161-182. MR 35 #759. MR 0209863 (35:759)
  • [2] A. J. Ellis, Extreme positive operators, Quart. J. Math. Oxford Ser. (2) 15 (1964), 342-344. MR 30 #4157. MR 0173950 (30:4157)
  • [3] J. Hoffman-Jørgensen, A generalization of the strict topology, Math. Scand. 30 (1972), 313-323. MR 0318857 (47:7403)
  • [4] R. B. Kirk, Algebras of bounded real-valued functions. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 75 = Indag. Math. 34 (1972), 443-463. MR 0320725 (47:9260a)
  • [5] R. B. Kirk and J. A. Crenshaw, A generalized topological measure theory (to appear).
  • [6] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139-156. MR 34 #4441. MR 0204602 (34:4441)
  • [7] S. E. Mosiman, Strict topologies and the ordered vector space $ C(X)$ (to appear).
  • [8] S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular setting: relations to topological measure theory, Canad. J. Math. 24 (1972), 873-890. MR 0328567 (48:6909)
  • [9] F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 45 #4133. MR 0295065 (45:4133)
  • [10] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 #6342. MR 0148838 (26:6342)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E10

Retrieve articles in all journals with MSC: 46E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1974-0370150-1
Keywords: Algebras of functions, strict topologies, positive linear operator, $ \sigma $-additive, $ \tau $-additive, tight, extreme linear operator, algebraic homomorphism
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society