EVERY DIRECTION A JULIA DIRECTION

BRYAN E. CAIN

ABSTRACT. Let \(f(z) = \exp(\cosh z) \). If \(N \) is any \(\epsilon \)-neighborhood of any ray through the origin with slope \(m \neq 0, \infty \) then \(f^{-1}(w) \cap N \) is infinite if \(w \neq 0 \).

Let \(J[f] \) denote the set of Julia directions of the entire function \(f \). That is, \(\theta \in J[f] \) if, in every sector \(\alpha < \arg z < \beta \) such that \(\alpha < \beta \), \(f \) assumes every complex value, with at most one exception, infinitely often. Using infinite products Julia [2] has constructed an entire function for which every direction is a Julia direction. The example which follows is more elementary.

The closed annulus \(\{1/n \leq |z| \leq n\} \) will be denoted \(A_n \) for \(n = 1, 2, \ldots \). If \(a, b, \delta > 0 \) the closed rectangle \(\{x + iy: -a < x < a; b - \delta < y < b + \delta\} \) will be denoted by \(R_\delta(a, b) \).

Theorem. If \(f(z) = \exp(\cosh z) \) then \(J[f] = \mathbb{R} \).

Proof. The relations \(f(\overline{z}) = (f(z))^\overline{\theta} \) and \(f(z) = f(-z) \) imply that if \(\theta \in J[f] \) then \(-\theta, \theta \pm \pi \in J[f] \). Consequently we can finish the proof by showing that \((0, \pi/2) \subset J[f] \) because the set of Julia directions is clearly always closed.

Now suppose that \(\theta, \alpha, \beta \) are given and that they satisfy \(0 < \theta < \pi/2 \) and \(\alpha < \theta < \beta \). They will be fixed for the rest of the proof.

Let \(S = \{x + iy: mx - \epsilon < y < mx + \epsilon\} \) where \(m = \tan \theta \) and \(0 < \epsilon < \pi \).

The function \(z \rightarrow \frac{1}{2} \exp(z) \) maps the strip \(S \) onto a ribbon which starts at the origin, wraps around it infinitely often, and spirals out to infinity. This ribbon has \(y_- \) for its inside boundary and \(y_+ \) for its outside boundary where

\[
y_\pm(y) = \frac{1}{2} \exp[(y \pm \epsilon)/m + iy]
\]

for all \(y \). The width of the ribbon \(|y_+(y) - y_-(y)| \), which is measured along a ray from the origin, is an unbounded increasing function of \(y \). The ribbon does not overlap itself because \(|y_-(y + 2n)| - |y_+(y)| > 0 \) provided \(\epsilon < \pi \).

Received by the editors August 30, 1973.

AMS (MOS) subject classifications (1970). Primary 30A70.
Let P_n denote the open parallelogram which is the intersection of the strip $\{x + iy : 2m < y < 2m + n\}$ with the strip S. Note that for all n larger than some n_0 the sector $\alpha < \arg z < \beta$ will contain P_n, and that the P_n's are disjoint. Thus the proof can be finished by showing that if $w \neq 0$ then $w \in f(P_n)$ for infinitely many n.

Let $i c_n$ be the midpoint of the interval in which $\frac{1}{2} \exp(P_n)$ meets the imaginary axis. Since $\frac{1}{2} \exp(P_n)$ is the interior of one component of the portion of the ribbon lying in the half plane $\text{Im } z > 0$, we know that $c_n > 0$.

Lemma. If $a > 0$ then $R_n(a, c) \subseteq \cosh(P_k)$ for infinitely many values of k.

Using this lemma we let $U = P_k$, where $k > n_0$ is chosen so large that $R_n(\log n_k, c_k) \subseteq \cosh(P_k)$ and P_k is disjoint from U, ... U_{n-1}. Then $f(U) \subseteq \exp(R_n(\log n_k, c_k)) = A_n$, and, since every $w \neq 0$ lies in infinitely many A_n, $f^{-1}(w) \cap \{a < \arg z < \beta\}$ is infinite. Thus $\theta \in f[f]$. □

Remark. This proof actually shows that if $\theta \neq 0$ or $\pi/2$ (mod π) and if N is any ϵ-neighborhood of a ray from the origin through $e^{i\theta}$, then $f^{-1}(w) \cap N$ is infinite if $w \neq 0$. Had we merely wished to prove the Theorem we could have replaced the P_n's with a sequence of disjoint rectangles $R_n = \{x + iy : a_n < x < b_n, 2mn < y < 2mn + \pi\}$ which lie in $\alpha < \arg z < \beta$ and for which the sequences a_n and $b_n - a_n$ approach ∞. Then $\frac{1}{2} \exp(R_n)$ is the intersection of the half plane $\text{Im } z > 0$ with the annulus $\exp(a_n) < |z| < \exp(b_n)$. Since the width $\exp(a_n) - \exp(b_n)$ of the annulus approaches ∞, it is geometrically clear that if $a > 0$ and if $c_n = \frac{1}{2}(\exp(a_n) + \exp(b_n))$, there will exist infinitely many n's for which the rectangle $R_n(a_n, c_n)$ lies inside $\frac{1}{2} \exp(R_n)$. But when a_n is large the boundary of $\cosh(R_n)$ will stay very close to the boundary of $\frac{1}{2} \exp(R_n)$ because then $\frac{1}{2} \exp(-R_n)$ must lie within a tiny neighborhood of 0. Thus $R_n(a_n, c_n) \subseteq \cosh(R_n)$ for infinitely many n's. Using this version of the Lemma, the Theorem can be proved by replacing the parallelograms P_n in the proof above with the rectangles R_n.

Proof of the Lemma. Suppose that $\delta > 0$ and let b_n be the largest number such that the interior of $R_\delta(b_n, c_n)$ is contained in $\frac{1}{2} \exp(P_n)$. (Once the width of the ribbon exceeds 2δ, b_n will be positive.) Then some vertex of $R_\delta(b_n, c_n)$ lies on γ_+ or γ_-, and we shall show that this implies the unboundedness of $\{b_n\}$. Since $|\gamma_\pm(y)|$ are increasing functions of y there are just two cases: (1) the northeast vertex $b_n + i(c_n + \delta)$ lies on γ_+, or (2) the southwest vertex $-b_n + i(c_n - \delta)$ lies on γ_-. When case (1) holds we have...
(A) \(b_n + i(c_n + \delta) = \gamma_+(2\pi n + \phi_n) \) where \(\phi_n = \tan^{-1}[(c_n + \delta)/b_n] \).

Assuming that \(b_n \) is bounded implies that \(\phi_n \to \pi/2 \) because \(c_n \to \infty \).

Now we divide equation (A) by \(\gamma_+(2\pi n + \pi/2) \). Since

\[
\gamma_n = \frac{1}{2i} \left(\gamma_+ \left(2\pi n + \frac{\pi}{2} \right) + \gamma_- \left(2\pi n + \frac{\pi}{2} \right) \right)
\]

and since \(\frac{\gamma_-(y)}{\gamma_+(y)} = \exp \left[\frac{-2\epsilon}{\lambda} \right] \)

the left side becomes

\[
\left[\frac{b_n + i\delta}{\gamma_+(2\pi n + \pi/2)} \right] + \frac{1}{2} \left(1 + \exp \left[\frac{-2\epsilon}{\lambda} \right] \right).
\]

The right side becomes \(\exp \left[(1/m + i)(\phi_n - \pi/2) \right] \) and if case (1) obtains for infinitely many \(n \) we can equate the limit as \(n \to \infty \) of each side and produce the contradiction \(\frac{1}{2} (1 + \exp [-2\epsilon/\lambda]) = 1 \).

Case (2) gives

(B) \(-b_n + i(c_n - \delta) = \gamma_- \left(2\pi n + \pi - \psi_n \right) \) where \(\psi_n = \tan^{-1}[(c_n - \delta)/b_n] \).

If \(b_n \) is bounded and (B) holds infinitely often, then dividing by \(\gamma_- \left(2\pi n + \pi/2 \right) \) and letting \(n \) approach \(\infty \) makes \(\psi_n \to \pi/2 \) and gives the contradiction \(\frac{1}{2} (\exp (2\epsilon/m) + 1) = 1 \).

This proves that \(b_n \) is unbounded. Thus, in particular, if \(\delta = \pi + 1 \) and \(b = a + 1 \) the inclusion \(R_n(a, c_n) \subset R_\delta(b, c_n) \subset \frac{1}{2} \exp (P_n) \) holds for infinitely many values of \(n \). Then when \(n \) is large enough the set \(\frac{1}{2} \exp (-P_n) \) will lie in a neighborhood of \(0 \) so small that \(\cosh (P_n) \) very nearly contains \(R_\delta(b, c_n) \) and certainly contains \(R_n(a, c_n) \).

Acknowledgement. We are indebted to Peter Colwell for provocative discussions and to Richard Tondra for improving our example.

REFERENCES

