Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Characterization of the flip operator


Author: H. A. Seid
Journal: Proc. Amer. Math. Soc. 46 (1974), 253-258
MSC: Primary 47B37
MathSciNet review: 0350493
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The flip operator $ F$ on $ {L_p}([0,1])$, defined by $ F(f)(t) = f(1 - t)$, for $ f$ in $ {L_p}([0,1])$ is characterized up to isometric transformation by means of its induced $ \sigma $-isomorphism on the Borel sets of $ [0,1]$.


References [Enhancements On Off] (What's this?)

  • [1] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
  • [2] John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 0105017
  • [3] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555
  • [4] H. A. Seid, Cyclic multiplication operators on $ {L_p}$-spaces, Pacific J. Math. (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37

Retrieve articles in all journals with MSC: 47B37


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1974-0350493-8
Article copyright: © Copyright 1974 American Mathematical Society