ON THE FAILURE OF THE FIRST PRINCIPLE OF
SEPARATION FOR COANALYTIC SETS

ASHOK MAITRA

ABSTRACT. In this note we present a new example of a pair of disjoint
cancoanalytic sets which are not Borel separable, i.e., coanalytic sets \(D \) and
\(H \) such that \(D \cap H = \emptyset \) and such that there is no Borel set \(E \) for which \(D \subseteq E \) and \(E \cap H = \emptyset \).

1. There are in the literature several proofs of the existence of a pair
of disjoint coanalytic sets which are not Borel separable [3, pp. 220, 260,
263], [4, p. 25], [5]. In this note we present yet another proof. We show
that Blackwell's construction in [1] of a Borel set which does not admit a
Borel uniformization yields explicitly a pair of disjoint coanalytic sets
which are not Borel separable.

2. First, we briefly recall Blackwell's construction. Let \(U \) be the
set of all finite sequences of positive integers of positive length. Let \(X \)
be the power-set of \(U \). Identify \(X \) with \(2^U \) and endow \(X \) with the prod-
uct of discrete topologies, so that \(X \) is a homeomorph of the Cantor set.
With each \(x \in X \), associate a game \(G(x) \) between players \(\alpha \) and \(\beta \) as fol-
lows: the players alternately choose positive integers, \(\alpha \) choosing first,
each choice being made with complete information about all previous choices.
For any play \(\omega = (n_1, n_2, \ldots, \) \), let \(k(\omega) \) be the first \(i \) such that
\((n_1, n_2, \ldots, n_i) \notin x \), and let \(k(\omega) = \infty \) if \((n_1, n_2, \ldots, n_i) \in x \) for all \(i \). A
play \(\omega \) is a win for \(\alpha \) in \(G(x) \) just in case \(k(\omega) \) is even, it is a win for \(\beta \)
if \(k(\omega) \) is odd, and it is a draw if \(k(\omega) = \infty \). In any game \(G(x) \), the space
\(Y_1 \) of strategies for \(\alpha \) can be identified with the set \(N^N \) of (infinite) se-
quencies of positive integers, which we equip with the product of discrete
topologies. A similar remark applies to the space Y_2 of strategies for β.

Let Y be the disjoint union of Y_1 and Y_2 and give Y the union topology, so that Y is a homeomorph of NN. Finally, let B_1 be the set of $(x, y) \in X \times Y_1$ such that y ensures α at least a draw in $G(x)$, and let B_2 be the set of $(x, y) \in X \times Y_2$ such that y ensures β at least a draw in $G(x)$.

Then, Blackwell has proved that

(i) B_1, B_2 are Borel subsets of $X \times Y$ (indeed, B_1, B_2 are closed subsets of $X \times Y$);

(ii) $\pi(B_1 \cup B_2) = X$, where π denotes projection of $X \times Y$ to X;

(iii) with each $x \in X$, it is possible to associate $x' \in X$ and an ordered pair (A_1, A_2) of nonempty analytic subsets of X in such a way that

(a) $G(x')$ is a win for α if $x \in A_1 - A_2$,

(b) $G(x')$ is a win for β if $x \in A_2 - A_1$,

(c) the mapping $x \mapsto x'$ is Borel measurable, and

(d) for every ordered pair (A_1, A_2) of nonempty analytic subsets of X, there is $x \in X$ such that (A_1, A_2) is associated with x.

We shall say that "x codes (A_1, A_2)" in case (A_1, A_2) is associated with x.

3. We are now ready to state our example. Let $D = X - \pi(B_1)$, and let $H = X - \pi(B_2)$. In other words, D is the set of $x \in X$ such that $G(x)$ is a win for β, while H is the set of x's such that $G(x)$ is a win for α. We claim that D, H are disjoint coanalytic sets which are not Borel separable.

From (i) it follows that D and H are coanalytic. (ii) implies that $D \cap H = \emptyset$. Next we note that D, H are nonempty. To see this, let x be the singleton set whose only member is the ordered pair $(1, 2)$. Plainly, $G(x)$ is a win for β, so that $x \in D$. A similar argument shows that $H \neq \emptyset$.

Now assume by way of contradiction that there is a Borel set $E \subseteq X$ such that $D \subseteq E$ and $E \cap H = \emptyset$. Plainly, E and $X - E$ are both nonempty. Let $W = \{x \in X : x' \in E\}$. By (iii)(c), W is Borel. We now assert that both W and $X - W$ are nonempty. To see, for instance, that $W \neq \emptyset$, choose $x_0 \in X$ and a nonempty analytic set $C \subseteq X$ such that x_0 codes (C, X) and $x_0 \notin C$ (we can do this; for, if not, then for each $z \in X$, z codes $(\{z\}, X)$, so that there are no codes left for the other pairs). Since $x_0 \in X - C$, it follows from (iii)(b) that $G(x_0')$ is a win for β, so $x_0' \in D$ and hence, $x_0 \in W$. One shows $X - W \neq \emptyset$ similarly.

Consequently, from (iii)(d), there is $x^* \in X$ such that x^* codes $(W, X - W)$. We now have:

$x^* \in E \rightarrow x^* \in W \rightarrow G(x^*)$ is a win for $\alpha \rightarrow x^* \in H \rightarrow x^* \notin E$; and also,
$x^{*'} \notin E \rightarrow x^* \in X - W \rightarrow G(x^{*'})$ is a win for $\beta \rightarrow x^{*'} \in D \rightarrow x^{*'} \in E$, so that $x^{*'} \in E \iff x^{*'} \notin E$, which yields the desired contradiction.

4. Finally, by using an argument due to Novikov [4, p. 25], one can deduce from the fact that D and H are not Borel separable that the set $B = B_1 \cup B_2$ does not admit a Borel uniformization. Indeed, suppose that S is a Borel uniformization of B. Let $T = \pi(S - B_1)$. Since π is continuous and one-one on S, T is Borel [2, p. 487]. Now verify that $D \subseteq T$ and $T \cap H = \emptyset$, which contradicts the fact that D and H are not Borel separable.

BIBLIOGRAPHY

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Indian Statistical Institute, Calcutta, India